Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216652023> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3216652023 abstract "A bstract Background Currently, the healthcare sector strives to increase the quality of patient management and improve the economic performance of healthcare providers. The data contained in electronic health records (EHRs) offer the potential to discover relevant patterns that aim to relate diseases and therapies, and thus discover patterns that could help identify empirical medical guidelines that reflect best practices in the healthcare system. Based on this pattern identification, it is then possible to implement recommendation systems based on the idea that a higher volume of procedures is associated with high-quality models. Methods Although there are several applications that use machine learning methods to identify these patterns, this identification is still a challenge, in part because these methods often ignore the basic structure of the population, considering the similarity of diagnoses and patient typology. To this end, we have developed graph methods that aim to cluster similar patients. In such models, patients are linked when the same or similar patterns can be observed for these patients, a concept that enables the construction of a network-like structure. This structure can then be analyzed with Graph Neural Networks (GNN) to identify relevant labels, in this case the appropriate medical procedures. Results We report the construction of a patient Graph structure based on basic patient’s information like age and gender as well as the diagnoses and trained GNNs models to identify the corresponding patient’s therapies using a synthetic patient database. We compared our GNN models against different baseline models (using the SCIKIT-learn library of python) and compared the performance of the different model methods. We have found that GNNs are superior, with an average improvement of the f1 score of 6.48% respect to the baseline models. In addition, the GNNs are useful for performing additional clustering analyses that allow specific identification of specific therapeutic clusters related to a particular combination of diagnoses. Conclusions We found that GNNs are a promising way to model the distribution of diagnoses in a patient population and thus better model how similar patients can be identified based on the combination of morbidities and comorbidities. Nevertheless, network building is still challenging and prone to prejudice, as it depends on how ICD distribution affects the patient network embedding space. This network setup requires not only a high quality of the underlying diagnostic ecosystem, but also a good understanding of how to identify related patients by disease. For this reason, additional work is needed to improve and better standardize patient embedding in graph structures for future investigations and applications of services based on this technology, and therefore is not yet an interventional study." @default.
- W3216652023 created "2021-12-06" @default.
- W3216652023 creator A5029297331 @default.
- W3216652023 creator A5059279881 @default.
- W3216652023 date "2021-12-02" @default.
- W3216652023 modified "2023-09-25" @default.
- W3216652023 title "Graph Neural Network Modelling as a potentially effective Method for predicting and analyzing Procedures based on Patient Diagnoses" @default.
- W3216652023 cites W2289647891 @default.
- W3216652023 cites W2298551783 @default.
- W3216652023 cites W2558748708 @default.
- W3216652023 cites W2755962399 @default.
- W3216652023 cites W2914632743 @default.
- W3216652023 cites W2950277699 @default.
- W3216652023 cites W3159956004 @default.
- W3216652023 cites W3160137267 @default.
- W3216652023 cites W3166254754 @default.
- W3216652023 cites W340069979 @default.
- W3216652023 cites W4238530616 @default.
- W3216652023 cites W4253749897 @default.
- W3216652023 cites W4289982671 @default.
- W3216652023 doi "https://doi.org/10.1101/2021.11.25.21266465" @default.
- W3216652023 hasPublicationYear "2021" @default.
- W3216652023 type Work @default.
- W3216652023 sameAs 3216652023 @default.
- W3216652023 citedByCount "1" @default.
- W3216652023 countsByYear W32166520232022 @default.
- W3216652023 crossrefType "posted-content" @default.
- W3216652023 hasAuthorship W3216652023A5029297331 @default.
- W3216652023 hasAuthorship W3216652023A5059279881 @default.
- W3216652023 hasBestOaLocation W32166520231 @default.
- W3216652023 hasConcept C116834253 @default.
- W3216652023 hasConcept C119857082 @default.
- W3216652023 hasConcept C124101348 @default.
- W3216652023 hasConcept C132525143 @default.
- W3216652023 hasConcept C142724271 @default.
- W3216652023 hasConcept C154945302 @default.
- W3216652023 hasConcept C160735492 @default.
- W3216652023 hasConcept C162324750 @default.
- W3216652023 hasConcept C2522767166 @default.
- W3216652023 hasConcept C41008148 @default.
- W3216652023 hasConcept C50522688 @default.
- W3216652023 hasConcept C50644808 @default.
- W3216652023 hasConcept C534262118 @default.
- W3216652023 hasConcept C59822182 @default.
- W3216652023 hasConcept C71924100 @default.
- W3216652023 hasConcept C80444323 @default.
- W3216652023 hasConcept C86803240 @default.
- W3216652023 hasConceptScore W3216652023C116834253 @default.
- W3216652023 hasConceptScore W3216652023C119857082 @default.
- W3216652023 hasConceptScore W3216652023C124101348 @default.
- W3216652023 hasConceptScore W3216652023C132525143 @default.
- W3216652023 hasConceptScore W3216652023C142724271 @default.
- W3216652023 hasConceptScore W3216652023C154945302 @default.
- W3216652023 hasConceptScore W3216652023C160735492 @default.
- W3216652023 hasConceptScore W3216652023C162324750 @default.
- W3216652023 hasConceptScore W3216652023C2522767166 @default.
- W3216652023 hasConceptScore W3216652023C41008148 @default.
- W3216652023 hasConceptScore W3216652023C50522688 @default.
- W3216652023 hasConceptScore W3216652023C50644808 @default.
- W3216652023 hasConceptScore W3216652023C534262118 @default.
- W3216652023 hasConceptScore W3216652023C59822182 @default.
- W3216652023 hasConceptScore W3216652023C71924100 @default.
- W3216652023 hasConceptScore W3216652023C80444323 @default.
- W3216652023 hasConceptScore W3216652023C86803240 @default.
- W3216652023 hasLocation W32166520231 @default.
- W3216652023 hasOpenAccess W3216652023 @default.
- W3216652023 hasPrimaryLocation W32166520231 @default.
- W3216652023 hasRelatedWork W2961085424 @default.
- W3216652023 hasRelatedWork W2981850339 @default.
- W3216652023 hasRelatedWork W3004279327 @default.
- W3216652023 hasRelatedWork W4286629047 @default.
- W3216652023 hasRelatedWork W4306321456 @default.
- W3216652023 hasRelatedWork W4306674287 @default.
- W3216652023 hasRelatedWork W4309637067 @default.
- W3216652023 hasRelatedWork W4316082230 @default.
- W3216652023 hasRelatedWork W1629725936 @default.
- W3216652023 hasRelatedWork W4224009465 @default.
- W3216652023 isParatext "false" @default.
- W3216652023 isRetracted "false" @default.
- W3216652023 magId "3216652023" @default.
- W3216652023 workType "article" @default.