Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216660879> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3216660879 abstract "The thyroid gland plays one of the most important organs in the human body. It secretes thyroid hormones, which regulate metabolism. Hypothyroidism and hyperthyroidism are caused by either too little or too much thyroid hormone secretion. This study assesses and analyzes existing data mining methods for diagnosing thyroid diseases. This paper aims to provide and identify the best practices in terms of applying data mining techniques such as decision tree, k-nearest neighbor, SVM, PNN, various Thyroid ailments which include the best machine learning model, naive Bayes, etc. Also, this research evaluates the preliminary techniques used to diagnose various thyroid diseases based on their efficacy and the number of attributes under the evaluation matrix. The attributes Age, sex, TSH, T3, TBG, T4U, TT4, and FTI were determined to be the most commonly used medical attributes in previous research works to perform experimental work to diagnose thyroid disorders. Almost every researcher has utilized one or more of these features to perform thyroid disease diagnostic work. According to the results of this study, there is a relationship between the number of attributes used and the accuracy rate achieved; The noticeable results that were presented in this study are some models are higher with fewer feature attributes while with the advent of the neural networks, the higher that number of attributes can give a better performance of classification. This area could be explored by considering adding and using more features to provide a more accurate and reliable output that can be a baseline for development." @default.
- W3216660879 created "2021-12-06" @default.
- W3216660879 creator A5056963621 @default.
- W3216660879 creator A5077628213 @default.
- W3216660879 date "2021-10-20" @default.
- W3216660879 modified "2023-09-25" @default.
- W3216660879 title "Application of Data Mining Techniques in Diagnosing Various Thyroid Ailments: A Review" @default.
- W3216660879 cites W1510933356 @default.
- W3216660879 cites W2008998164 @default.
- W3216660879 cites W2010214894 @default.
- W3216660879 cites W2022514969 @default.
- W3216660879 cites W2034432818 @default.
- W3216660879 cites W2066467884 @default.
- W3216660879 cites W2115953835 @default.
- W3216660879 cites W2118266232 @default.
- W3216660879 cites W2157490257 @default.
- W3216660879 cites W2160787835 @default.
- W3216660879 cites W2164603349 @default.
- W3216660879 cites W2670180008 @default.
- W3216660879 cites W2794830684 @default.
- W3216660879 cites W2910443141 @default.
- W3216660879 cites W2913518762 @default.
- W3216660879 cites W4254901917 @default.
- W3216660879 doi "https://doi.org/10.1109/icts52701.2021.9608400" @default.
- W3216660879 hasPublicationYear "2021" @default.
- W3216660879 type Work @default.
- W3216660879 sameAs 3216660879 @default.
- W3216660879 citedByCount "5" @default.
- W3216660879 countsByYear W32166608792022 @default.
- W3216660879 countsByYear W32166608792023 @default.
- W3216660879 crossrefType "proceedings-article" @default.
- W3216660879 hasAuthorship W3216660879A5056963621 @default.
- W3216660879 hasAuthorship W3216660879A5077628213 @default.
- W3216660879 hasConcept C119857082 @default.
- W3216660879 hasConcept C12267149 @default.
- W3216660879 hasConcept C124101348 @default.
- W3216660879 hasConcept C126322002 @default.
- W3216660879 hasConcept C138885662 @default.
- W3216660879 hasConcept C154945302 @default.
- W3216660879 hasConcept C193524817 @default.
- W3216660879 hasConcept C2776401178 @default.
- W3216660879 hasConcept C2780176905 @default.
- W3216660879 hasConcept C41008148 @default.
- W3216660879 hasConcept C41895202 @default.
- W3216660879 hasConcept C52001869 @default.
- W3216660879 hasConcept C526584372 @default.
- W3216660879 hasConcept C71924100 @default.
- W3216660879 hasConcept C84525736 @default.
- W3216660879 hasConceptScore W3216660879C119857082 @default.
- W3216660879 hasConceptScore W3216660879C12267149 @default.
- W3216660879 hasConceptScore W3216660879C124101348 @default.
- W3216660879 hasConceptScore W3216660879C126322002 @default.
- W3216660879 hasConceptScore W3216660879C138885662 @default.
- W3216660879 hasConceptScore W3216660879C154945302 @default.
- W3216660879 hasConceptScore W3216660879C193524817 @default.
- W3216660879 hasConceptScore W3216660879C2776401178 @default.
- W3216660879 hasConceptScore W3216660879C2780176905 @default.
- W3216660879 hasConceptScore W3216660879C41008148 @default.
- W3216660879 hasConceptScore W3216660879C41895202 @default.
- W3216660879 hasConceptScore W3216660879C52001869 @default.
- W3216660879 hasConceptScore W3216660879C526584372 @default.
- W3216660879 hasConceptScore W3216660879C71924100 @default.
- W3216660879 hasConceptScore W3216660879C84525736 @default.
- W3216660879 hasLocation W32166608791 @default.
- W3216660879 hasOpenAccess W3216660879 @default.
- W3216660879 hasPrimaryLocation W32166608791 @default.
- W3216660879 hasRelatedWork W1470425429 @default.
- W3216660879 hasRelatedWork W2969622225 @default.
- W3216660879 hasRelatedWork W3022791929 @default.
- W3216660879 hasRelatedWork W3186233728 @default.
- W3216660879 hasRelatedWork W4226139868 @default.
- W3216660879 hasRelatedWork W4291177832 @default.
- W3216660879 hasRelatedWork W4377964522 @default.
- W3216660879 hasRelatedWork W4384345534 @default.
- W3216660879 hasRelatedWork W4385810203 @default.
- W3216660879 hasRelatedWork W4386263996 @default.
- W3216660879 isParatext "false" @default.
- W3216660879 isRetracted "false" @default.
- W3216660879 magId "3216660879" @default.
- W3216660879 workType "article" @default.