Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216689888> ?p ?o ?g. }
- W3216689888 endingPage "101507" @default.
- W3216689888 startingPage "101507" @default.
- W3216689888 abstract "The solution of the imaging inversion problem is an important step in the electrical capacitance tomography developed for process parameter measurements. Many studies have been carried out to improve the reconstruction quality, but the discrepancy between ground-truth imaging prototypes and recovered tomograms is still significant. To address the challenge, the regularization by denoising (RED) is introduced in this work, turning the denoising algorithm into a regularizer. Measurement physics, RED and sparsity prior are coupled into a new imaging model. A new numerical method is developed to solve the established imaging model by integrating the split Bregman algorithm and the forward backward splitting technique. To improve the performance of RED, the multiple output least squares support vector machine is combined with the low-dimensional representation method, and the training problem is solved by a new distributed computational method. The nonnegative matrix factorization method is extended into a new low-dimensional representation method, and a powerful optimizer is developed to solve the model. The performance evaluations clearly imply that the new method achieves more significant reconstruction performance gain and better robustness than popular imaging algorithms. This study improves the measurement physics based imaging method by machine learning techniques, and provides new perspectives and insights into the development of the image reconstruction paradigm." @default.
- W3216689888 created "2021-12-06" @default.
- W3216689888 creator A5015288133 @default.
- W3216689888 creator A5018989901 @default.
- W3216689888 creator A5033284348 @default.
- W3216689888 date "2022-01-01" @default.
- W3216689888 modified "2023-09-26" @default.
- W3216689888 title "Computational inverse imaging method by machine learning-informed physical model for electrical capacitance tomography" @default.
- W3216689888 cites W1902027874 @default.
- W3216689888 cites W1984011536 @default.
- W3216689888 cites W1990627496 @default.
- W3216689888 cites W2000241688 @default.
- W3216689888 cites W2002548781 @default.
- W3216689888 cites W2006262045 @default.
- W3216689888 cites W2035414577 @default.
- W3216689888 cites W2049772201 @default.
- W3216689888 cites W2066020965 @default.
- W3216689888 cites W2079245836 @default.
- W3216689888 cites W2091494211 @default.
- W3216689888 cites W2100556411 @default.
- W3216689888 cites W2106030748 @default.
- W3216689888 cites W2114314161 @default.
- W3216689888 cites W2115342670 @default.
- W3216689888 cites W2122825543 @default.
- W3216689888 cites W2142058898 @default.
- W3216689888 cites W2144359569 @default.
- W3216689888 cites W2145725490 @default.
- W3216689888 cites W2478234951 @default.
- W3216689888 cites W2529302757 @default.
- W3216689888 cites W2531859882 @default.
- W3216689888 cites W2573726823 @default.
- W3216689888 cites W2582639297 @default.
- W3216689888 cites W2588610058 @default.
- W3216689888 cites W2741786247 @default.
- W3216689888 cites W2746167419 @default.
- W3216689888 cites W2785942661 @default.
- W3216689888 cites W2788048701 @default.
- W3216689888 cites W2804478515 @default.
- W3216689888 cites W2809801483 @default.
- W3216689888 cites W2822024738 @default.
- W3216689888 cites W2836448562 @default.
- W3216689888 cites W2884068217 @default.
- W3216689888 cites W2892836164 @default.
- W3216689888 cites W2893789700 @default.
- W3216689888 cites W2895901585 @default.
- W3216689888 cites W2901101316 @default.
- W3216689888 cites W2903436285 @default.
- W3216689888 cites W2905017682 @default.
- W3216689888 cites W2911794652 @default.
- W3216689888 cites W2919115771 @default.
- W3216689888 cites W2962733564 @default.
- W3216689888 cites W2963550745 @default.
- W3216689888 cites W2965202915 @default.
- W3216689888 cites W2968898205 @default.
- W3216689888 cites W2978831816 @default.
- W3216689888 cites W2979873887 @default.
- W3216689888 cites W2996569757 @default.
- W3216689888 cites W2998812258 @default.
- W3216689888 cites W2999823538 @default.
- W3216689888 cites W3043713930 @default.
- W3216689888 cites W3099534047 @default.
- W3216689888 cites W3102562067 @default.
- W3216689888 cites W3105299400 @default.
- W3216689888 cites W3145248306 @default.
- W3216689888 doi "https://doi.org/10.1016/j.jocs.2021.101507" @default.
- W3216689888 hasPublicationYear "2022" @default.
- W3216689888 type Work @default.
- W3216689888 sameAs 3216689888 @default.
- W3216689888 citedByCount "1" @default.
- W3216689888 countsByYear W32166898882023 @default.
- W3216689888 crossrefType "journal-article" @default.
- W3216689888 hasAuthorship W3216689888A5015288133 @default.
- W3216689888 hasAuthorship W3216689888A5018989901 @default.
- W3216689888 hasAuthorship W3216689888A5033284348 @default.
- W3216689888 hasConcept C104317684 @default.
- W3216689888 hasConcept C109007969 @default.
- W3216689888 hasConcept C11413529 @default.
- W3216689888 hasConcept C134306372 @default.
- W3216689888 hasConcept C135252773 @default.
- W3216689888 hasConcept C141379421 @default.
- W3216689888 hasConcept C147789679 @default.
- W3216689888 hasConcept C151730666 @default.
- W3216689888 hasConcept C154945302 @default.
- W3216689888 hasConcept C163294075 @default.
- W3216689888 hasConcept C17525397 @default.
- W3216689888 hasConcept C17744445 @default.
- W3216689888 hasConcept C185592680 @default.
- W3216689888 hasConcept C1893757 @default.
- W3216689888 hasConcept C199539241 @default.
- W3216689888 hasConcept C2776135515 @default.
- W3216689888 hasConcept C2776359362 @default.
- W3216689888 hasConcept C2777418626 @default.
- W3216689888 hasConcept C30066665 @default.
- W3216689888 hasConcept C33923547 @default.
- W3216689888 hasConcept C41008148 @default.
- W3216689888 hasConcept C55493867 @default.
- W3216689888 hasConcept C63479239 @default.
- W3216689888 hasConcept C81184566 @default.