Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216730492> ?p ?o ?g. }
- W3216730492 abstract "Modelling the sudden depressurisation of superheated liquids through nozzles is a challenge because the pressure drop causes rapid flash boiling of the liquid. The resulting jet usually demonstrates a wide range of structures, including ligaments and droplets, due to both mechanical and thermodynamic effects. As the simulation comprises increasingly numerous phenomena, the computational cost begins to increase. One way to moderate the additional cost is to use machine learning surrogacy for specific elements of the calculations. The present study presents a machine learning-assisted computational fluid dynamics approach for simulating the atomisation of flashing liquids accounting for distinct stages, from primary atomisation to secondary break-up to small droplets using the ${Sigma}$-Y model coupled with the homogeneous relaxation model. Notably, the model for the thermodynamic non-equilibrium (HRM) and ${Sigma}$-Y are coupled, for the first time, with a deep neural network that simulates the turbulence quantities, which are then used in the prediction of superheated liquid jet atomisation. The data-driven component of the method is used for turbulence modelling, avoiding the solution of the two-equation turbulence model typically used for Reynolds-averaged Navier-Stokes simulations for these problems. Both the accuracy and speed of the hybrid approach are evaluated, demonstrating adequate accuracy and at least 25% faster computational fluid dynamics simulations than the traditional approach. This acceleration suggests that perhaps additional components of the calculation could be replaced for even further benefit." @default.
- W3216730492 created "2021-12-06" @default.
- W3216730492 creator A5007555642 @default.
- W3216730492 creator A5048243433 @default.
- W3216730492 creator A5068753065 @default.
- W3216730492 date "2021-12-01" @default.
- W3216730492 modified "2023-10-16" @default.
- W3216730492 title "Machine learning accelerated turbulence modeling of transient flashing jets" @default.
- W3216730492 cites W1007462233 @default.
- W3216730492 cites W1528439235 @default.
- W3216730492 cites W1918776765 @default.
- W3216730492 cites W1966243290 @default.
- W3216730492 cites W1967962594 @default.
- W3216730492 cites W1972130680 @default.
- W3216730492 cites W1977375006 @default.
- W3216730492 cites W1991896435 @default.
- W3216730492 cites W1992567778 @default.
- W3216730492 cites W2010289433 @default.
- W3216730492 cites W2013419517 @default.
- W3216730492 cites W2015437704 @default.
- W3216730492 cites W2038003659 @default.
- W3216730492 cites W2038259743 @default.
- W3216730492 cites W2048603282 @default.
- W3216730492 cites W2050996150 @default.
- W3216730492 cites W2060753912 @default.
- W3216730492 cites W2069168576 @default.
- W3216730492 cites W2074849152 @default.
- W3216730492 cites W2078644903 @default.
- W3216730492 cites W2085340369 @default.
- W3216730492 cites W2091614047 @default.
- W3216730492 cites W2110187357 @default.
- W3216730492 cites W2345737627 @default.
- W3216730492 cites W2515586274 @default.
- W3216730492 cites W2516987968 @default.
- W3216730492 cites W2534240011 @default.
- W3216730492 cites W2624914515 @default.
- W3216730492 cites W2751811895 @default.
- W3216730492 cites W2765549249 @default.
- W3216730492 cites W2787341187 @default.
- W3216730492 cites W2792050292 @default.
- W3216730492 cites W2795681974 @default.
- W3216730492 cites W2903546100 @default.
- W3216730492 cites W2907742690 @default.
- W3216730492 cites W2945581297 @default.
- W3216730492 cites W2962777873 @default.
- W3216730492 cites W2969665376 @default.
- W3216730492 cites W3005714251 @default.
- W3216730492 cites W3013108861 @default.
- W3216730492 cites W3013803313 @default.
- W3216730492 cites W3027801118 @default.
- W3216730492 cites W3033609389 @default.
- W3216730492 cites W3036965708 @default.
- W3216730492 cites W3080891795 @default.
- W3216730492 cites W3082908155 @default.
- W3216730492 cites W3105245152 @default.
- W3216730492 cites W3105578088 @default.
- W3216730492 cites W3118391542 @default.
- W3216730492 cites W3135859784 @default.
- W3216730492 cites W3161054362 @default.
- W3216730492 cites W3162533428 @default.
- W3216730492 cites W3163630945 @default.
- W3216730492 cites W3173898035 @default.
- W3216730492 doi "https://doi.org/10.1063/5.0072180" @default.
- W3216730492 hasPublicationYear "2021" @default.
- W3216730492 type Work @default.
- W3216730492 sameAs 3216730492 @default.
- W3216730492 citedByCount "10" @default.
- W3216730492 countsByYear W32167304922022 @default.
- W3216730492 countsByYear W32167304922023 @default.
- W3216730492 crossrefType "journal-article" @default.
- W3216730492 hasAuthorship W3216730492A5007555642 @default.
- W3216730492 hasAuthorship W3216730492A5048243433 @default.
- W3216730492 hasAuthorship W3216730492A5068753065 @default.
- W3216730492 hasBestOaLocation W32167304921 @default.
- W3216730492 hasConcept C121332964 @default.
- W3216730492 hasConcept C121864883 @default.
- W3216730492 hasConcept C1633027 @default.
- W3216730492 hasConcept C191897082 @default.
- W3216730492 hasConcept C192562407 @default.
- W3216730492 hasConcept C196558001 @default.
- W3216730492 hasConcept C204573209 @default.
- W3216730492 hasConcept C2780148907 @default.
- W3216730492 hasConcept C32526432 @default.
- W3216730492 hasConcept C37114186 @default.
- W3216730492 hasConcept C56200935 @default.
- W3216730492 hasConcept C57879066 @default.
- W3216730492 hasConcept C97355855 @default.
- W3216730492 hasConceptScore W3216730492C121332964 @default.
- W3216730492 hasConceptScore W3216730492C121864883 @default.
- W3216730492 hasConceptScore W3216730492C1633027 @default.
- W3216730492 hasConceptScore W3216730492C191897082 @default.
- W3216730492 hasConceptScore W3216730492C192562407 @default.
- W3216730492 hasConceptScore W3216730492C196558001 @default.
- W3216730492 hasConceptScore W3216730492C204573209 @default.
- W3216730492 hasConceptScore W3216730492C2780148907 @default.
- W3216730492 hasConceptScore W3216730492C32526432 @default.
- W3216730492 hasConceptScore W3216730492C37114186 @default.
- W3216730492 hasConceptScore W3216730492C56200935 @default.
- W3216730492 hasConceptScore W3216730492C57879066 @default.
- W3216730492 hasConceptScore W3216730492C97355855 @default.