Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216742254> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3216742254 endingPage "12" @default.
- W3216742254 startingPage "1" @default.
- W3216742254 abstract "The rapidly increasing incidence of Diabetes Mellitus (DM) has shown that DM is a serious disease that endangered human life in all parts of the world. The late stage of Type-II DM (T2DM) in particular is accompanied by complex complications. Healthcare systems with various data mining algorithms can help the endocrinologist to find whether patients have diabetes in the early detection of T2DM. In the present research, a novel and efficient binary logistic regression (BLR) is proposed founding on feature transformation of XGBoost (XGBoost-BLR) for accurately predicting the specific type of T2DM, and making the model adaptive to more than one dataset. In order to raise the identification ratio, the databases are executed by series of preprocessing procedures which include removing outliers, normalization, and missing value processing. We select features that have a more significant effect on the results by χ2 test (CST). Then, the selected features are projected into high-dimensional feature space by XGBoost. Finally, the high-dimensional features generated can be modeled by the BLR application. The proposed XGBoost-BLR achieved a 94% and 98% identification rate for diabetes prediction in Pima Indians Diabetes Database (PIDD) and Early-Stage Diabetes Risk Prediction Database (ESDRPD)." @default.
- W3216742254 created "2021-12-06" @default.
- W3216742254 creator A5007302498 @default.
- W3216742254 creator A5010134818 @default.
- W3216742254 creator A5037373238 @default.
- W3216742254 creator A5042658326 @default.
- W3216742254 creator A5059211394 @default.
- W3216742254 creator A5073847195 @default.
- W3216742254 creator A5085352453 @default.
- W3216742254 creator A5088943895 @default.
- W3216742254 date "2022-04-01" @default.
- W3216742254 modified "2023-10-16" @default.
- W3216742254 title "Novel binary logistic regression model based on feature transformation of XGBoost for type 2 Diabetes Mellitus prediction in healthcare systems" @default.
- W3216742254 cites W1803439455 @default.
- W3216742254 cites W1982934478 @default.
- W3216742254 cites W2018495107 @default.
- W3216742254 cites W2078855524 @default.
- W3216742254 cites W2088249484 @default.
- W3216742254 cites W2128382462 @default.
- W3216742254 cites W2461380379 @default.
- W3216742254 cites W2509636912 @default.
- W3216742254 cites W2525984666 @default.
- W3216742254 cites W2586297576 @default.
- W3216742254 cites W2610135452 @default.
- W3216742254 cites W2753920499 @default.
- W3216742254 cites W2911087020 @default.
- W3216742254 cites W2914959816 @default.
- W3216742254 cites W2915053252 @default.
- W3216742254 cites W2943491685 @default.
- W3216742254 cites W2965264925 @default.
- W3216742254 cites W2969808173 @default.
- W3216742254 cites W2992013246 @default.
- W3216742254 cites W3094123356 @default.
- W3216742254 cites W3102476541 @default.
- W3216742254 doi "https://doi.org/10.1016/j.future.2021.11.003" @default.
- W3216742254 hasPublicationYear "2022" @default.
- W3216742254 type Work @default.
- W3216742254 sameAs 3216742254 @default.
- W3216742254 citedByCount "34" @default.
- W3216742254 countsByYear W32167422542022 @default.
- W3216742254 countsByYear W32167422542023 @default.
- W3216742254 crossrefType "journal-article" @default.
- W3216742254 hasAuthorship W3216742254A5007302498 @default.
- W3216742254 hasAuthorship W3216742254A5010134818 @default.
- W3216742254 hasAuthorship W3216742254A5037373238 @default.
- W3216742254 hasAuthorship W3216742254A5042658326 @default.
- W3216742254 hasAuthorship W3216742254A5059211394 @default.
- W3216742254 hasAuthorship W3216742254A5073847195 @default.
- W3216742254 hasAuthorship W3216742254A5085352453 @default.
- W3216742254 hasAuthorship W3216742254A5088943895 @default.
- W3216742254 hasConcept C10551718 @default.
- W3216742254 hasConcept C119857082 @default.
- W3216742254 hasConcept C124101348 @default.
- W3216742254 hasConcept C138885662 @default.
- W3216742254 hasConcept C151956035 @default.
- W3216742254 hasConcept C154945302 @default.
- W3216742254 hasConcept C2776401178 @default.
- W3216742254 hasConcept C34736171 @default.
- W3216742254 hasConcept C41008148 @default.
- W3216742254 hasConcept C41895202 @default.
- W3216742254 hasConcept C79337645 @default.
- W3216742254 hasConceptScore W3216742254C10551718 @default.
- W3216742254 hasConceptScore W3216742254C119857082 @default.
- W3216742254 hasConceptScore W3216742254C124101348 @default.
- W3216742254 hasConceptScore W3216742254C138885662 @default.
- W3216742254 hasConceptScore W3216742254C151956035 @default.
- W3216742254 hasConceptScore W3216742254C154945302 @default.
- W3216742254 hasConceptScore W3216742254C2776401178 @default.
- W3216742254 hasConceptScore W3216742254C34736171 @default.
- W3216742254 hasConceptScore W3216742254C41008148 @default.
- W3216742254 hasConceptScore W3216742254C41895202 @default.
- W3216742254 hasConceptScore W3216742254C79337645 @default.
- W3216742254 hasFunder F4320327511 @default.
- W3216742254 hasLocation W32167422541 @default.
- W3216742254 hasOpenAccess W3216742254 @default.
- W3216742254 hasPrimaryLocation W32167422541 @default.
- W3216742254 hasRelatedWork W1566614651 @default.
- W3216742254 hasRelatedWork W1969363727 @default.
- W3216742254 hasRelatedWork W2367157896 @default.
- W3216742254 hasRelatedWork W2378657478 @default.
- W3216742254 hasRelatedWork W2473769720 @default.
- W3216742254 hasRelatedWork W2909479475 @default.
- W3216742254 hasRelatedWork W2912112257 @default.
- W3216742254 hasRelatedWork W3008473190 @default.
- W3216742254 hasRelatedWork W4283807634 @default.
- W3216742254 hasRelatedWork W2613950675 @default.
- W3216742254 hasVolume "129" @default.
- W3216742254 isParatext "false" @default.
- W3216742254 isRetracted "false" @default.
- W3216742254 magId "3216742254" @default.
- W3216742254 workType "article" @default.