Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216746671> ?p ?o ?g. }
- W3216746671 endingPage "100355" @default.
- W3216746671 startingPage "100355" @default.
- W3216746671 abstract "Understanding variations in the severity of infectious diseases is essential for planning proper mitigation strategies. Determinants of COVID-19 clinical severity are commonly assessed by transverse or longitudinal studies of the fatality counts. However, the fatality counts depend both on disease clinical severity and transmissibility, as more infected also lead to more deaths. Instead, we use epidemiological modeling to propose a disease severity measure that accounts for the underlying disease dynamics. The measure corresponds to the ratio of population-averaged mortality and recovery rates (m/r), is independent of the disease transmission dynamics (i.e., the basic reproduction number), and has a direct mechanistic interpretation. We use this measure to assess demographic, medical, meteorological, and environmental factors associated with the disease severity. For this, we employ an ecological regression study design and analyze different US states during the first disease outbreak. Principal Component Analysis, followed by univariate, and multivariate analyses based on machine learning techniques, is used for selecting important predictors. The usefulness of the introduced severity measure and the validity of the approach are confirmed by the fact that, without using prior knowledge from clinical studies, we recover the main significant predictors known to influence disease severity, in particular age, chronic diseases, and racial factors. Additionally, we identify long-term pollution exposure and population density as not widely recognized (though for the pollution previously hypothesized) significant predictors. The proposed measure is applicable for inferring severity determinants not only of COVID-19 but also of other infectious diseases, and the obtained results may aid a better understanding of the present and future epidemics. Our holistic, systematic investigation of disease severity at the human-environment intersection by epidemiological dynamical modeling and machine learning ecological regressions is aligned with the One Health approach. The obtained results emphasize a syndemic nature of COVID-19 risks." @default.
- W3216746671 created "2021-12-06" @default.
- W3216746671 creator A5013363397 @default.
- W3216746671 creator A5022335201 @default.
- W3216746671 creator A5034480189 @default.
- W3216746671 creator A5041251645 @default.
- W3216746671 creator A5058010712 @default.
- W3216746671 creator A5062983702 @default.
- W3216746671 date "2021-12-01" @default.
- W3216746671 modified "2023-09-27" @default.
- W3216746671 title "COVID-19 severity determinants inferred through ecological and epidemiological modeling" @default.
- W3216746671 cites W2041652193 @default.
- W3216746671 cites W2598190019 @default.
- W3216746671 cites W3011631576 @default.
- W3216746671 cites W3024230195 @default.
- W3216746671 cites W3033561420 @default.
- W3216746671 cites W3036629380 @default.
- W3216746671 cites W3044071798 @default.
- W3216746671 cites W3046005295 @default.
- W3216746671 cites W3046527182 @default.
- W3216746671 cites W3047203988 @default.
- W3216746671 cites W3082322820 @default.
- W3216746671 cites W3082501133 @default.
- W3216746671 cites W3083182046 @default.
- W3216746671 cites W3084864060 @default.
- W3216746671 cites W3088423812 @default.
- W3216746671 cites W3088824746 @default.
- W3216746671 cites W3089283915 @default.
- W3216746671 cites W3089569447 @default.
- W3216746671 cites W3091969000 @default.
- W3216746671 cites W3093018472 @default.
- W3216746671 cites W3095961138 @default.
- W3216746671 cites W3096969158 @default.
- W3216746671 cites W3101243097 @default.
- W3216746671 cites W3101801931 @default.
- W3216746671 cites W3103455625 @default.
- W3216746671 cites W3105596189 @default.
- W3216746671 cites W3105996462 @default.
- W3216746671 cites W3106008401 @default.
- W3216746671 cites W3106682141 @default.
- W3216746671 cites W3107203818 @default.
- W3216746671 cites W3119307150 @default.
- W3216746671 cites W3126524931 @default.
- W3216746671 cites W3131652885 @default.
- W3216746671 cites W3154170405 @default.
- W3216746671 cites W3156994935 @default.
- W3216746671 cites W3157607700 @default.
- W3216746671 cites W3160648783 @default.
- W3216746671 cites W3175617800 @default.
- W3216746671 cites W3182539349 @default.
- W3216746671 cites W3186195701 @default.
- W3216746671 cites W3195963686 @default.
- W3216746671 doi "https://doi.org/10.1016/j.onehlt.2021.100355" @default.
- W3216746671 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34869819" @default.
- W3216746671 hasPublicationYear "2021" @default.
- W3216746671 type Work @default.
- W3216746671 sameAs 3216746671 @default.
- W3216746671 citedByCount "8" @default.
- W3216746671 countsByYear W32167466712022 @default.
- W3216746671 countsByYear W32167466712023 @default.
- W3216746671 crossrefType "journal-article" @default.
- W3216746671 hasAuthorship W3216746671A5013363397 @default.
- W3216746671 hasAuthorship W3216746671A5022335201 @default.
- W3216746671 hasAuthorship W3216746671A5034480189 @default.
- W3216746671 hasAuthorship W3216746671A5041251645 @default.
- W3216746671 hasAuthorship W3216746671A5058010712 @default.
- W3216746671 hasAuthorship W3216746671A5062983702 @default.
- W3216746671 hasBestOaLocation W32167466711 @default.
- W3216746671 hasConcept C105795698 @default.
- W3216746671 hasConcept C107130276 @default.
- W3216746671 hasConcept C116675565 @default.
- W3216746671 hasConcept C142724271 @default.
- W3216746671 hasConcept C161584116 @default.
- W3216746671 hasConcept C187316915 @default.
- W3216746671 hasConcept C199163554 @default.
- W3216746671 hasConcept C2779134260 @default.
- W3216746671 hasConcept C2908647359 @default.
- W3216746671 hasConcept C33923547 @default.
- W3216746671 hasConcept C71924100 @default.
- W3216746671 hasConcept C99454951 @default.
- W3216746671 hasConceptScore W3216746671C105795698 @default.
- W3216746671 hasConceptScore W3216746671C107130276 @default.
- W3216746671 hasConceptScore W3216746671C116675565 @default.
- W3216746671 hasConceptScore W3216746671C142724271 @default.
- W3216746671 hasConceptScore W3216746671C161584116 @default.
- W3216746671 hasConceptScore W3216746671C187316915 @default.
- W3216746671 hasConceptScore W3216746671C199163554 @default.
- W3216746671 hasConceptScore W3216746671C2779134260 @default.
- W3216746671 hasConceptScore W3216746671C2908647359 @default.
- W3216746671 hasConceptScore W3216746671C33923547 @default.
- W3216746671 hasConceptScore W3216746671C71924100 @default.
- W3216746671 hasConceptScore W3216746671C99454951 @default.
- W3216746671 hasFunder F4320322729 @default.
- W3216746671 hasLocation W32167466711 @default.
- W3216746671 hasLocation W32167466712 @default.
- W3216746671 hasLocation W32167466713 @default.
- W3216746671 hasLocation W32167466714 @default.
- W3216746671 hasLocation W32167466715 @default.