Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216750844> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3216750844 abstract "In this research, the effective sampling method known as Compressed Sensing (CS) theory is applied to Wireless Body Area Networks (WBANs) to provide low power and low sampling-rate wireless healthcare systems and intelligent emergency care management systems. The fundamental contribution of this work can be divided into three areas. 1) We propose two new algorithms in the sensing, measurement, and processing area to compress biomedical data. 2) In the communication area, one new channel model based on CS theory is defined to transmit compressed data to the receiver side. 3) In the receiver side or reconstruction area, two new algorithms for recovering the original biomedical data are presented to recover the original data. Our results will be divided into three areas. 1) We employ the proposed algorithms to WBANs with a single biomedical signal (i.e. Electroencephalography [ECG] signals as a sample signal). In this area, the simulation results illustrate an increment of 10% improved for sensitivity in receiving compressed ECG signals. The simulation results also illustrate a 25% reduction of Percentage Root-mean-square Difference (PRD) for ECG signals on the receiver side. In addition, they confirm the ability of CS to maximize the prediction level for received the ECG signal at either Gate Ways (GWs) or Access Points (APs). 2) We illustrate that the proposed algorithms can be employed in WBANs with multiple biomedical signals to enhance current health care systems into low-power wireless healthcare systems. In this area, the simulation results confirm that for a particular WBAN, including N biomedical signals, the sampling-rate can be reduced by 25-35% and power consumption by 35-40%, without sacrificing the network’s performance. 3) Here improvements for wireless channel feature between BWSs and either GWs or APs are shown. In this area, the results demonstrate that CS is able to maximize signal amplitude to 25-30% at the receiver as well as distance between transmitter and receiver BWS to 30%. Moreover, these results confirm that path loss can be reduced to 25%." @default.
- W3216750844 created "2021-12-06" @default.
- W3216750844 creator A5078832772 @default.
- W3216750844 date "2021-05-22" @default.
- W3216750844 modified "2023-09-23" @default.
- W3216750844 title "Wireless Body Area Networks Based on Compressed Sensing Theory" @default.
- W3216750844 doi "https://doi.org/10.32920/ryerson.14647965.v1" @default.
- W3216750844 hasPublicationYear "2021" @default.
- W3216750844 type Work @default.
- W3216750844 sameAs 3216750844 @default.
- W3216750844 citedByCount "0" @default.
- W3216750844 crossrefType "posted-content" @default.
- W3216750844 hasAuthorship W3216750844A5078832772 @default.
- W3216750844 hasBestOaLocation W32167508441 @default.
- W3216750844 hasConcept C108037233 @default.
- W3216750844 hasConcept C111335779 @default.
- W3216750844 hasConcept C124851039 @default.
- W3216750844 hasConcept C127162648 @default.
- W3216750844 hasConcept C127413603 @default.
- W3216750844 hasConcept C140779682 @default.
- W3216750844 hasConcept C154945302 @default.
- W3216750844 hasConcept C199360897 @default.
- W3216750844 hasConcept C21200559 @default.
- W3216750844 hasConcept C24326235 @default.
- W3216750844 hasConcept C24590314 @default.
- W3216750844 hasConcept C2524010 @default.
- W3216750844 hasConcept C2779843651 @default.
- W3216750844 hasConcept C31258907 @default.
- W3216750844 hasConcept C33923547 @default.
- W3216750844 hasConcept C41008148 @default.
- W3216750844 hasConcept C555944384 @default.
- W3216750844 hasConcept C76155785 @default.
- W3216750844 hasConcept C79403827 @default.
- W3216750844 hasConcept C88737568 @default.
- W3216750844 hasConcept C94915269 @default.
- W3216750844 hasConceptScore W3216750844C108037233 @default.
- W3216750844 hasConceptScore W3216750844C111335779 @default.
- W3216750844 hasConceptScore W3216750844C124851039 @default.
- W3216750844 hasConceptScore W3216750844C127162648 @default.
- W3216750844 hasConceptScore W3216750844C127413603 @default.
- W3216750844 hasConceptScore W3216750844C140779682 @default.
- W3216750844 hasConceptScore W3216750844C154945302 @default.
- W3216750844 hasConceptScore W3216750844C199360897 @default.
- W3216750844 hasConceptScore W3216750844C21200559 @default.
- W3216750844 hasConceptScore W3216750844C24326235 @default.
- W3216750844 hasConceptScore W3216750844C24590314 @default.
- W3216750844 hasConceptScore W3216750844C2524010 @default.
- W3216750844 hasConceptScore W3216750844C2779843651 @default.
- W3216750844 hasConceptScore W3216750844C31258907 @default.
- W3216750844 hasConceptScore W3216750844C33923547 @default.
- W3216750844 hasConceptScore W3216750844C41008148 @default.
- W3216750844 hasConceptScore W3216750844C555944384 @default.
- W3216750844 hasConceptScore W3216750844C76155785 @default.
- W3216750844 hasConceptScore W3216750844C79403827 @default.
- W3216750844 hasConceptScore W3216750844C88737568 @default.
- W3216750844 hasConceptScore W3216750844C94915269 @default.
- W3216750844 hasLocation W32167508441 @default.
- W3216750844 hasLocation W32167508442 @default.
- W3216750844 hasOpenAccess W3216750844 @default.
- W3216750844 hasPrimaryLocation W32167508441 @default.
- W3216750844 hasRelatedWork W2016048302 @default.
- W3216750844 hasRelatedWork W2062734869 @default.
- W3216750844 hasRelatedWork W2065285429 @default.
- W3216750844 hasRelatedWork W2074258948 @default.
- W3216750844 hasRelatedWork W2114849205 @default.
- W3216750844 hasRelatedWork W2170717840 @default.
- W3216750844 hasRelatedWork W2338691873 @default.
- W3216750844 hasRelatedWork W2363173518 @default.
- W3216750844 hasRelatedWork W2379468505 @default.
- W3216750844 hasRelatedWork W2381696241 @default.
- W3216750844 isParatext "false" @default.
- W3216750844 isRetracted "false" @default.
- W3216750844 magId "3216750844" @default.
- W3216750844 workType "article" @default.