Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216768543> ?p ?o ?g. }
- W3216768543 endingPage "045004" @default.
- W3216768543 startingPage "045004" @default.
- W3216768543 abstract "Abstract Graphene aerogels (GAs), a special class of 3D graphene assemblies, are well known for their exceptional combination of high strength, lightweightness, and high porosity. However, due to microstructural randomness, the mechanical properties of GAs are also highly stochastic, an issue that has been observed but insufficiently addressed. In this work, we develop Gaussian process metamodels to not only predict important mechanical properties of GAs but also quantify their uncertainties. Using the molecular dynamics simulation technique, GAs are assembled from randomly distributed graphene flakes and spherical inclusions, and are subsequently subject to a quasi-static uniaxial tensile load to deduce mechanical properties. Results show that given the same density, mechanical properties such as the Young’s modulus and the ultimate tensile strength can vary substantially. Treating density, Young’s modulus, and ultimate tensile strength as functions of the inclusion size, and using the simulated GA results as training data, we build Gaussian process metamodels that can efficiently predict the properties of unseen GAs. In addition, statistically valid confidence intervals centered around the predictions are established. This metamodel approach is particularly beneficial when the data acquisition requires expensive experiments or computation, which is the case for GA simulations. The present research quantifies the uncertain mechanical properties of GAs, which may shed light on the statistical analysis of novel nanomaterials of a broad variety." @default.
- W3216768543 created "2021-12-06" @default.
- W3216768543 creator A5002874750 @default.
- W3216768543 creator A5023828194 @default.
- W3216768543 creator A5025067820 @default.
- W3216768543 date "2021-12-01" @default.
- W3216768543 modified "2023-09-23" @default.
- W3216768543 title "Uncertainty quantification and prediction for mechanical properties of graphene aerogels via Gaussian process metamodels" @default.
- W3216768543 cites W1859617839 @default.
- W3216768543 cites W1979853986 @default.
- W3216768543 cites W2010971702 @default.
- W3216768543 cites W2019465613 @default.
- W3216768543 cites W2019702852 @default.
- W3216768543 cites W2032424149 @default.
- W3216768543 cites W2033989787 @default.
- W3216768543 cites W2049270784 @default.
- W3216768543 cites W2058209895 @default.
- W3216768543 cites W2075367033 @default.
- W3216768543 cites W2078792724 @default.
- W3216768543 cites W2109111609 @default.
- W3216768543 cites W2110360886 @default.
- W3216768543 cites W2156043887 @default.
- W3216768543 cites W2163392372 @default.
- W3216768543 cites W2215053873 @default.
- W3216768543 cites W2297038452 @default.
- W3216768543 cites W2313564049 @default.
- W3216768543 cites W2406732376 @default.
- W3216768543 cites W2569338880 @default.
- W3216768543 cites W2607193947 @default.
- W3216768543 cites W2608990977 @default.
- W3216768543 cites W2612565025 @default.
- W3216768543 cites W2621674188 @default.
- W3216768543 cites W2710020768 @default.
- W3216768543 cites W2971408796 @default.
- W3216768543 cites W2986327250 @default.
- W3216768543 cites W2990971121 @default.
- W3216768543 cites W2998551285 @default.
- W3216768543 cites W2998840182 @default.
- W3216768543 cites W3034873091 @default.
- W3216768543 cites W3083636052 @default.
- W3216768543 cites W3092985605 @default.
- W3216768543 cites W3121056737 @default.
- W3216768543 cites W3189164715 @default.
- W3216768543 cites W3197983298 @default.
- W3216768543 doi "https://doi.org/10.1088/2399-1984/ac3c8f" @default.
- W3216768543 hasPublicationYear "2021" @default.
- W3216768543 type Work @default.
- W3216768543 sameAs 3216768543 @default.
- W3216768543 citedByCount "3" @default.
- W3216768543 countsByYear W32167685432022 @default.
- W3216768543 countsByYear W32167685432023 @default.
- W3216768543 crossrefType "journal-article" @default.
- W3216768543 hasAuthorship W3216768543A5002874750 @default.
- W3216768543 hasAuthorship W3216768543A5023828194 @default.
- W3216768543 hasAuthorship W3216768543A5025067820 @default.
- W3216768543 hasConcept C105795698 @default.
- W3216768543 hasConcept C111919701 @default.
- W3216768543 hasConcept C112950240 @default.
- W3216768543 hasConcept C11413529 @default.
- W3216768543 hasConcept C121332964 @default.
- W3216768543 hasConcept C125112378 @default.
- W3216768543 hasConcept C127413603 @default.
- W3216768543 hasConcept C159985019 @default.
- W3216768543 hasConcept C163716315 @default.
- W3216768543 hasConcept C171250308 @default.
- W3216768543 hasConcept C186060115 @default.
- W3216768543 hasConcept C18762648 @default.
- W3216768543 hasConcept C192562407 @default.
- W3216768543 hasConcept C193867417 @default.
- W3216768543 hasConcept C199360897 @default.
- W3216768543 hasConcept C2524010 @default.
- W3216768543 hasConcept C30080830 @default.
- W3216768543 hasConcept C33923547 @default.
- W3216768543 hasConcept C41008148 @default.
- W3216768543 hasConcept C45374587 @default.
- W3216768543 hasConcept C61326573 @default.
- W3216768543 hasConcept C62520636 @default.
- W3216768543 hasConcept C6648577 @default.
- W3216768543 hasConcept C78519656 @default.
- W3216768543 hasConcept C86610423 @default.
- W3216768543 hasConcept C86803240 @default.
- W3216768543 hasConcept C98045186 @default.
- W3216768543 hasConcept C99844830 @default.
- W3216768543 hasConceptScore W3216768543C105795698 @default.
- W3216768543 hasConceptScore W3216768543C111919701 @default.
- W3216768543 hasConceptScore W3216768543C112950240 @default.
- W3216768543 hasConceptScore W3216768543C11413529 @default.
- W3216768543 hasConceptScore W3216768543C121332964 @default.
- W3216768543 hasConceptScore W3216768543C125112378 @default.
- W3216768543 hasConceptScore W3216768543C127413603 @default.
- W3216768543 hasConceptScore W3216768543C159985019 @default.
- W3216768543 hasConceptScore W3216768543C163716315 @default.
- W3216768543 hasConceptScore W3216768543C171250308 @default.
- W3216768543 hasConceptScore W3216768543C186060115 @default.
- W3216768543 hasConceptScore W3216768543C18762648 @default.
- W3216768543 hasConceptScore W3216768543C192562407 @default.
- W3216768543 hasConceptScore W3216768543C193867417 @default.
- W3216768543 hasConceptScore W3216768543C199360897 @default.