Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216833217> ?p ?o ?g. }
- W3216833217 endingPage "8017" @default.
- W3216833217 startingPage "8017" @default.
- W3216833217 abstract "Wireless Sensors Networks have been the focus of significant attention from research and development due to their applications of collecting data from various fields such as smart cities, power grids, transportation systems, medical sectors, military, and rural areas. Accurate and reliable measurements for insightful data analysis and decision-making are the ultimate goals of sensor networks for critical domains. However, the raw data collected by WSNs usually are not reliable and inaccurate due to the imperfect nature of WSNs. Identifying misbehaviours or anomalies in the network is important for providing reliable and secure functioning of the network. However, due to resource constraints, a lightweight detection scheme is a major design challenge in sensor networks. This paper aims at designing and developing a lightweight anomaly detection scheme to improve efficiency in terms of reducing the computational complexity and communication and improving memory utilization overhead while maintaining high accuracy. To achieve this aim, one-class learning and dimension reduction concepts were used in the design. The One-Class Support Vector Machine (OCSVM) with hyper-ellipsoid variance was used for anomaly detection due to its advantage in classifying unlabelled and multivariate data. Various One-Class Support Vector Machine formulations have been investigated and Centred-Ellipsoid has been adopted in this study due to its effectiveness. Centred-Ellipsoid is the most effective kernel among studies formulations. To decrease the computational complexity and improve memory utilization, the dimensions of the data were reduced using the Candid Covariance-Free Incremental Principal Component Analysis (CCIPCA) algorithm. Extensive experiments were conducted to evaluate the proposed lightweight anomaly detection scheme. Results in terms of detection accuracy, memory utilization, computational complexity, and communication overhead show that the proposed scheme is effective and efficient compared few existing schemes evaluated. The proposed anomaly detection scheme achieved the accuracy higher than 98%, with O(nd) memory utilization and no communication overhead." @default.
- W3216833217 created "2021-12-06" @default.
- W3216833217 creator A5018312503 @default.
- W3216833217 creator A5038236474 @default.
- W3216833217 creator A5043834125 @default.
- W3216833217 creator A5062591167 @default.
- W3216833217 creator A5071625361 @default.
- W3216833217 creator A5082128095 @default.
- W3216833217 date "2021-11-30" @default.
- W3216833217 modified "2023-10-17" @default.
- W3216833217 title "Lightweight Anomaly Detection Scheme Using Incremental Principal Component Analysis and Support Vector Machine" @default.
- W3216833217 cites W1664828614 @default.
- W3216833217 cites W1791349932 @default.
- W3216833217 cites W1969609037 @default.
- W3216833217 cites W1974879849 @default.
- W3216833217 cites W1979952077 @default.
- W3216833217 cites W1995700507 @default.
- W3216833217 cites W2039520991 @default.
- W3216833217 cites W2042678829 @default.
- W3216833217 cites W2062853765 @default.
- W3216833217 cites W2063614938 @default.
- W3216833217 cites W2074613498 @default.
- W3216833217 cites W2083029956 @default.
- W3216833217 cites W2083835467 @default.
- W3216833217 cites W2095713606 @default.
- W3216833217 cites W2100294832 @default.
- W3216833217 cites W2105103777 @default.
- W3216833217 cites W2111184007 @default.
- W3216833217 cites W2113026618 @default.
- W3216833217 cites W2122053769 @default.
- W3216833217 cites W2122646361 @default.
- W3216833217 cites W2127775588 @default.
- W3216833217 cites W2129263930 @default.
- W3216833217 cites W2131767821 @default.
- W3216833217 cites W2132870739 @default.
- W3216833217 cites W2136992183 @default.
- W3216833217 cites W2141681031 @default.
- W3216833217 cites W2142960677 @default.
- W3216833217 cites W2151764894 @default.
- W3216833217 cites W2156209126 @default.
- W3216833217 cites W2168452204 @default.
- W3216833217 cites W2217430106 @default.
- W3216833217 cites W2278186031 @default.
- W3216833217 cites W2524620548 @default.
- W3216833217 cites W2738913630 @default.
- W3216833217 cites W2741340996 @default.
- W3216833217 cites W2758497020 @default.
- W3216833217 cites W2765607255 @default.
- W3216833217 cites W2789791180 @default.
- W3216833217 cites W2889096970 @default.
- W3216833217 cites W2896430708 @default.
- W3216833217 cites W2913865526 @default.
- W3216833217 cites W2981025625 @default.
- W3216833217 cites W2999214632 @default.
- W3216833217 cites W2999269122 @default.
- W3216833217 cites W3004458996 @default.
- W3216833217 cites W3007537043 @default.
- W3216833217 cites W3027086451 @default.
- W3216833217 cites W3095658067 @default.
- W3216833217 cites W3095752837 @default.
- W3216833217 cites W3122385966 @default.
- W3216833217 cites W3131200756 @default.
- W3216833217 cites W4251162923 @default.
- W3216833217 doi "https://doi.org/10.3390/s21238017" @default.
- W3216833217 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34884022" @default.
- W3216833217 hasPublicationYear "2021" @default.
- W3216833217 type Work @default.
- W3216833217 sameAs 3216833217 @default.
- W3216833217 citedByCount "6" @default.
- W3216833217 countsByYear W32168332172022 @default.
- W3216833217 countsByYear W32168332172023 @default.
- W3216833217 crossrefType "journal-article" @default.
- W3216833217 hasAuthorship W3216833217A5018312503 @default.
- W3216833217 hasAuthorship W3216833217A5038236474 @default.
- W3216833217 hasAuthorship W3216833217A5043834125 @default.
- W3216833217 hasAuthorship W3216833217A5062591167 @default.
- W3216833217 hasAuthorship W3216833217A5071625361 @default.
- W3216833217 hasAuthorship W3216833217A5082128095 @default.
- W3216833217 hasBestOaLocation W32168332171 @default.
- W3216833217 hasConcept C105795698 @default.
- W3216833217 hasConcept C111919701 @default.
- W3216833217 hasConcept C11413529 @default.
- W3216833217 hasConcept C114614502 @default.
- W3216833217 hasConcept C119857082 @default.
- W3216833217 hasConcept C122280245 @default.
- W3216833217 hasConcept C12267149 @default.
- W3216833217 hasConcept C124101348 @default.
- W3216833217 hasConcept C154945302 @default.
- W3216833217 hasConcept C178650346 @default.
- W3216833217 hasConcept C182335926 @default.
- W3216833217 hasConcept C185142706 @default.
- W3216833217 hasConcept C24590314 @default.
- W3216833217 hasConcept C27438332 @default.
- W3216833217 hasConcept C2779960059 @default.
- W3216833217 hasConcept C31258907 @default.
- W3216833217 hasConcept C33923547 @default.
- W3216833217 hasConcept C41008148 @default.
- W3216833217 hasConcept C70518039 @default.