Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216846663> ?p ?o ?g. }
- W3216846663 endingPage "8" @default.
- W3216846663 startingPage "1" @default.
- W3216846663 abstract "Features selection is very important in the multivariate models because the accuracy of forecasting results produced by the model are highly dependent on these selected features. The purpose of this study is to propose grey relational analysis and support vector regression for features selection. The features are economic indicators that are used to forecast property crime rate. Grey relational analysis selects the best data series to represent each economic indicator and rank the economic indicators according to its importance to the property crime rate. Next, the support vector regression is used to select the significant economic indicators where particle swarm optimization estimates the parameters of support vector regression. In this study, we use unemployment rate, consumer price index, gross domestic product and consumer sentiment index as the economic indicators, as well as property crime rate for the United States. From our experiments, we found that the gross domestic product, unemployment rate and consumer price index are the most influential economic indicators. The proposed method is also found to produce better forecasting accuracy as compared to multiple linear regressions." @default.
- W3216846663 created "2021-12-06" @default.
- W3216846663 creator A5017352077 @default.
- W3216846663 creator A5044442552 @default.
- W3216846663 creator A5075574029 @default.
- W3216846663 date "2022-01-02" @default.
- W3216846663 modified "2023-09-25" @default.
- W3216846663 title "Economic Indicators Selection for Property Crime Rates using Grey Relational Analysis and Support Vector Regression" @default.
- W3216846663 cites W1963626514 @default.
- W3216846663 cites W1970399023 @default.
- W3216846663 cites W1974609156 @default.
- W3216846663 cites W1974891822 @default.
- W3216846663 cites W1975863443 @default.
- W3216846663 cites W1981453526 @default.
- W3216846663 cites W2004910370 @default.
- W3216846663 cites W2013377700 @default.
- W3216846663 cites W2014794090 @default.
- W3216846663 cites W2017511934 @default.
- W3216846663 cites W2017726294 @default.
- W3216846663 cites W2020526497 @default.
- W3216846663 cites W2022597957 @default.
- W3216846663 cites W2025818806 @default.
- W3216846663 cites W2026783478 @default.
- W3216846663 cites W2032927332 @default.
- W3216846663 cites W2034404348 @default.
- W3216846663 cites W2042816221 @default.
- W3216846663 cites W2045328084 @default.
- W3216846663 cites W2048842176 @default.
- W3216846663 cites W2062355752 @default.
- W3216846663 cites W2064542832 @default.
- W3216846663 cites W2069388972 @default.
- W3216846663 cites W2070837766 @default.
- W3216846663 cites W2084299990 @default.
- W3216846663 cites W2087566928 @default.
- W3216846663 cites W2096368472 @default.
- W3216846663 cites W2117014758 @default.
- W3216846663 cites W2123487577 @default.
- W3216846663 cites W2125804223 @default.
- W3216846663 cites W2127153672 @default.
- W3216846663 cites W2143868121 @default.
- W3216846663 cites W2146040852 @default.
- W3216846663 cites W2147803265 @default.
- W3216846663 cites W2152195021 @default.
- W3216846663 cites W2159081835 @default.
- W3216846663 cites W2163449935 @default.
- W3216846663 cites W2275469673 @default.
- W3216846663 cites W53334923 @default.
- W3216846663 cites W86385803 @default.
- W3216846663 doi "https://doi.org/10.46300/91015.2022.16.1" @default.
- W3216846663 hasPublicationYear "2022" @default.
- W3216846663 type Work @default.
- W3216846663 sameAs 3216846663 @default.
- W3216846663 citedByCount "0" @default.
- W3216846663 crossrefType "journal-article" @default.
- W3216846663 hasAuthorship W3216846663A5017352077 @default.
- W3216846663 hasAuthorship W3216846663A5044442552 @default.
- W3216846663 hasAuthorship W3216846663A5075574029 @default.
- W3216846663 hasBestOaLocation W32168466631 @default.
- W3216846663 hasConcept C105795698 @default.
- W3216846663 hasConcept C111472728 @default.
- W3216846663 hasConcept C114350782 @default.
- W3216846663 hasConcept C12267149 @default.
- W3216846663 hasConcept C136764020 @default.
- W3216846663 hasConcept C138885662 @default.
- W3216846663 hasConcept C139719470 @default.
- W3216846663 hasConcept C148483581 @default.
- W3216846663 hasConcept C149782125 @default.
- W3216846663 hasConcept C152877465 @default.
- W3216846663 hasConcept C154945302 @default.
- W3216846663 hasConcept C161584116 @default.
- W3216846663 hasConcept C162324750 @default.
- W3216846663 hasConcept C189950617 @default.
- W3216846663 hasConcept C202353208 @default.
- W3216846663 hasConcept C2777382242 @default.
- W3216846663 hasConcept C2778126366 @default.
- W3216846663 hasConcept C2994488168 @default.
- W3216846663 hasConcept C33923547 @default.
- W3216846663 hasConcept C41008148 @default.
- W3216846663 hasConcept C50522688 @default.
- W3216846663 hasConcept C64734493 @default.
- W3216846663 hasConcept C81917197 @default.
- W3216846663 hasConcept C83546350 @default.
- W3216846663 hasConceptScore W3216846663C105795698 @default.
- W3216846663 hasConceptScore W3216846663C111472728 @default.
- W3216846663 hasConceptScore W3216846663C114350782 @default.
- W3216846663 hasConceptScore W3216846663C12267149 @default.
- W3216846663 hasConceptScore W3216846663C136764020 @default.
- W3216846663 hasConceptScore W3216846663C138885662 @default.
- W3216846663 hasConceptScore W3216846663C139719470 @default.
- W3216846663 hasConceptScore W3216846663C148483581 @default.
- W3216846663 hasConceptScore W3216846663C149782125 @default.
- W3216846663 hasConceptScore W3216846663C152877465 @default.
- W3216846663 hasConceptScore W3216846663C154945302 @default.
- W3216846663 hasConceptScore W3216846663C161584116 @default.
- W3216846663 hasConceptScore W3216846663C162324750 @default.
- W3216846663 hasConceptScore W3216846663C189950617 @default.
- W3216846663 hasConceptScore W3216846663C202353208 @default.
- W3216846663 hasConceptScore W3216846663C2777382242 @default.