Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216907054> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3216907054 abstract "Most of the real-world applications deal with large data streams that are generated continuously. With this increase in the size of data streams, the existing data stream clustering algorithms cannot be implemented efficiently as these are designed to tackle static data. This invalidation of the existing algorithms becomes even more prominent when dealing with continuous as well as evolving data streams. To effectively cluster such data streams, there is a need for algorithms that can deal with the memory and computational limitations along with the concept drift. In this regard, various state-of-the-art clustering techniques have been modified to tackle the continuity and evolving nature of data. One of the main approaches used by researchers is devising a hybrid framework, commonly termed as online-offline phase clustering. This approach effectively addresses Big Data. However, it does not provide any mechanism to detect the expired data points – data that has lost its significance due to concept drift. To further improve clustering algorithms, researchers came up with window models that serve as updating units, thus, successfully handling concept drift. Realizing the need for enhanced algorithms, in this paper we closely analyze these clustering algorithms by providing a detailed discussion on their performance from different perspectives, such as memory and computational cost, cluster quality and purity, scalability, effectiveness in detecting outliers, and the cluster shape. Our survey encompasses a comprehensive and thorough literature review of the evolving data stream clustering techniques established in recent years. Further, the paper highlights the shortcomings of the algorithms, and tends to target the limitations that should be tackled in future." @default.
- W3216907054 created "2021-12-06" @default.
- W3216907054 creator A5040305670 @default.
- W3216907054 creator A5082830972 @default.
- W3216907054 date "2021-09-21" @default.
- W3216907054 modified "2023-09-26" @default.
- W3216907054 title "A Comprehensive Review on Evolving Data Stream Clustering" @default.
- W3216907054 doi "https://doi.org/10.1109/comtech52583.2021.9616754" @default.
- W3216907054 hasPublicationYear "2021" @default.
- W3216907054 type Work @default.
- W3216907054 sameAs 3216907054 @default.
- W3216907054 citedByCount "0" @default.
- W3216907054 crossrefType "proceedings-article" @default.
- W3216907054 hasAuthorship W3216907054A5040305670 @default.
- W3216907054 hasAuthorship W3216907054A5082830972 @default.
- W3216907054 hasConcept C119857082 @default.
- W3216907054 hasConcept C124101348 @default.
- W3216907054 hasConcept C154945302 @default.
- W3216907054 hasConcept C193143536 @default.
- W3216907054 hasConcept C2778484313 @default.
- W3216907054 hasConcept C33704608 @default.
- W3216907054 hasConcept C41008148 @default.
- W3216907054 hasConcept C48044578 @default.
- W3216907054 hasConcept C60777511 @default.
- W3216907054 hasConcept C73555534 @default.
- W3216907054 hasConcept C75684735 @default.
- W3216907054 hasConcept C76155785 @default.
- W3216907054 hasConcept C77088390 @default.
- W3216907054 hasConcept C79337645 @default.
- W3216907054 hasConcept C89198739 @default.
- W3216907054 hasConcept C94641424 @default.
- W3216907054 hasConceptScore W3216907054C119857082 @default.
- W3216907054 hasConceptScore W3216907054C124101348 @default.
- W3216907054 hasConceptScore W3216907054C154945302 @default.
- W3216907054 hasConceptScore W3216907054C193143536 @default.
- W3216907054 hasConceptScore W3216907054C2778484313 @default.
- W3216907054 hasConceptScore W3216907054C33704608 @default.
- W3216907054 hasConceptScore W3216907054C41008148 @default.
- W3216907054 hasConceptScore W3216907054C48044578 @default.
- W3216907054 hasConceptScore W3216907054C60777511 @default.
- W3216907054 hasConceptScore W3216907054C73555534 @default.
- W3216907054 hasConceptScore W3216907054C75684735 @default.
- W3216907054 hasConceptScore W3216907054C76155785 @default.
- W3216907054 hasConceptScore W3216907054C77088390 @default.
- W3216907054 hasConceptScore W3216907054C79337645 @default.
- W3216907054 hasConceptScore W3216907054C89198739 @default.
- W3216907054 hasConceptScore W3216907054C94641424 @default.
- W3216907054 hasLocation W32169070541 @default.
- W3216907054 hasOpenAccess W3216907054 @default.
- W3216907054 hasPrimaryLocation W32169070541 @default.
- W3216907054 hasRelatedWork W1985618814 @default.
- W3216907054 hasRelatedWork W2079625735 @default.
- W3216907054 hasRelatedWork W2104804466 @default.
- W3216907054 hasRelatedWork W2337929971 @default.
- W3216907054 hasRelatedWork W2360069064 @default.
- W3216907054 hasRelatedWork W2386567985 @default.
- W3216907054 hasRelatedWork W2518466227 @default.
- W3216907054 hasRelatedWork W3104083384 @default.
- W3216907054 hasRelatedWork W3183283580 @default.
- W3216907054 hasRelatedWork W4284892066 @default.
- W3216907054 isParatext "false" @default.
- W3216907054 isRetracted "false" @default.
- W3216907054 magId "3216907054" @default.
- W3216907054 workType "article" @default.