Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216951847> ?p ?o ?g. }
- W3216951847 endingPage "8035" @default.
- W3216951847 startingPage "8035" @default.
- W3216951847 abstract "In Generation Expansion Planning (GEP), the power plants lifetime is one of the most important factors which to the best knowledge of the authors, has not been investigated in the literature. In this article, the power plants lifetime effect on GEP is investigated. In addition, the deep learning-based approaches are widely used for time series forecasting. Therefore, a new version of Long short-term memory (LSTM) networks known as Bi-directional LSTM (BLSTM) networks are used in this paper to forecast annual peak load of the power system. For carbon emissions, the cost of carbon is considered as the penalty of pollution in the objective function. The proposed approach is evaluated by a test network and then applied to Iran power system as a large-scale grid. The simulations by GAMS (General Algebraic Modeling System, Washington, DC, USA) software show that due to consideration of lifetime as a constraint, the total cost of the GEP problem decreases by 5.28% and 7.9% for the test system and Iran power system, respectively." @default.
- W3216951847 created "2021-12-06" @default.
- W3216951847 creator A5006098475 @default.
- W3216951847 creator A5010786589 @default.
- W3216951847 creator A5049134995 @default.
- W3216951847 creator A5049322378 @default.
- W3216951847 creator A5050557656 @default.
- W3216951847 creator A5050619915 @default.
- W3216951847 date "2021-12-01" @default.
- W3216951847 modified "2023-10-16" @default.
- W3216951847 title "A Deep Learning-Based Approach for Generation Expansion Planning Considering Power Plants Lifetime" @default.
- W3216951847 cites W1162908881 @default.
- W3216951847 cites W1903269325 @default.
- W3216951847 cites W2004593219 @default.
- W3216951847 cites W2026748842 @default.
- W3216951847 cites W2046542878 @default.
- W3216951847 cites W2069804366 @default.
- W3216951847 cites W2070289386 @default.
- W3216951847 cites W2071226964 @default.
- W3216951847 cites W2078204192 @default.
- W3216951847 cites W2104995535 @default.
- W3216951847 cites W2118923865 @default.
- W3216951847 cites W2146086982 @default.
- W3216951847 cites W2255207632 @default.
- W3216951847 cites W2258197179 @default.
- W3216951847 cites W2282142381 @default.
- W3216951847 cites W2294561737 @default.
- W3216951847 cites W2304311302 @default.
- W3216951847 cites W2434405289 @default.
- W3216951847 cites W2558804746 @default.
- W3216951847 cites W2596254545 @default.
- W3216951847 cites W2730601384 @default.
- W3216951847 cites W2735073641 @default.
- W3216951847 cites W2807041517 @default.
- W3216951847 cites W2810496999 @default.
- W3216951847 cites W2908875359 @default.
- W3216951847 cites W2922019030 @default.
- W3216951847 cites W2927713464 @default.
- W3216951847 cites W2941184193 @default.
- W3216951847 cites W2948300920 @default.
- W3216951847 cites W2950660471 @default.
- W3216951847 cites W2954439055 @default.
- W3216951847 cites W2955710688 @default.
- W3216951847 cites W2963890461 @default.
- W3216951847 cites W2981638931 @default.
- W3216951847 cites W2995993003 @default.
- W3216951847 cites W3032655245 @default.
- W3216951847 cites W3038990392 @default.
- W3216951847 cites W3044162788 @default.
- W3216951847 cites W3092177662 @default.
- W3216951847 cites W3094435116 @default.
- W3216951847 cites W3096341995 @default.
- W3216951847 cites W3125928381 @default.
- W3216951847 cites W3201273103 @default.
- W3216951847 cites W3204004226 @default.
- W3216951847 doi "https://doi.org/10.3390/en14238035" @default.
- W3216951847 hasPublicationYear "2021" @default.
- W3216951847 type Work @default.
- W3216951847 sameAs 3216951847 @default.
- W3216951847 citedByCount "6" @default.
- W3216951847 countsByYear W32169518472022 @default.
- W3216951847 countsByYear W32169518472023 @default.
- W3216951847 crossrefType "journal-article" @default.
- W3216951847 hasAuthorship W3216951847A5006098475 @default.
- W3216951847 hasAuthorship W3216951847A5010786589 @default.
- W3216951847 hasAuthorship W3216951847A5049134995 @default.
- W3216951847 hasAuthorship W3216951847A5049322378 @default.
- W3216951847 hasAuthorship W3216951847A5050557656 @default.
- W3216951847 hasAuthorship W3216951847A5050619915 @default.
- W3216951847 hasBestOaLocation W32169518471 @default.
- W3216951847 hasConcept C121332964 @default.
- W3216951847 hasConcept C126255220 @default.
- W3216951847 hasConcept C127413603 @default.
- W3216951847 hasConcept C14036430 @default.
- W3216951847 hasConcept C143724316 @default.
- W3216951847 hasConcept C151730666 @default.
- W3216951847 hasConcept C154945302 @default.
- W3216951847 hasConcept C163258240 @default.
- W3216951847 hasConcept C187691185 @default.
- W3216951847 hasConcept C200601418 @default.
- W3216951847 hasConcept C2524010 @default.
- W3216951847 hasConcept C2776036281 @default.
- W3216951847 hasConcept C2778755073 @default.
- W3216951847 hasConcept C33923547 @default.
- W3216951847 hasConcept C41008148 @default.
- W3216951847 hasConcept C61797465 @default.
- W3216951847 hasConcept C62520636 @default.
- W3216951847 hasConcept C78458016 @default.
- W3216951847 hasConcept C78519656 @default.
- W3216951847 hasConcept C86803240 @default.
- W3216951847 hasConcept C89227174 @default.
- W3216951847 hasConceptScore W3216951847C121332964 @default.
- W3216951847 hasConceptScore W3216951847C126255220 @default.
- W3216951847 hasConceptScore W3216951847C127413603 @default.
- W3216951847 hasConceptScore W3216951847C14036430 @default.
- W3216951847 hasConceptScore W3216951847C143724316 @default.
- W3216951847 hasConceptScore W3216951847C151730666 @default.
- W3216951847 hasConceptScore W3216951847C154945302 @default.