Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216979551> ?p ?o ?g. }
- W3216979551 endingPage "25" @default.
- W3216979551 startingPage "1" @default.
- W3216979551 abstract "It always helps to determine optimal solutions for stochastic problems thereby maintaining good balance between its key elements. Nature inspired algorithms are meta-heuristics that mimic the natural activities for solving optimization issues in the era of computation. In the past decades, several research works have been presented for optimization especially in the field of data mining. This paper addresses the implementation of bio-inspired optimization techniques for machine learning based data mining classification by four different optimization algorithms. The stochastic problems are overcome by training the neural network model with techniques such as barnacles mating , black widow optimization, cuckoo algorithm and elephant herd optimization. The experiments are performed on five different datasets, and the outcomes are compared with existing methods with respect to runtime, mean square error and classification rate. From the experimental analysis, the proposed bio-inspired optimization algorithms are found to be effective for classification with neural network training." @default.
- W3216979551 created "2021-12-06" @default.
- W3216979551 creator A5001919742 @default.
- W3216979551 creator A5072665694 @default.
- W3216979551 date "2021-11-19" @default.
- W3216979551 modified "2023-09-25" @default.
- W3216979551 title "Comparative Analysis of Bio-Inspired Optimization Algorithms in Neural Network-Based Data Mining Classification" @default.
- W3216979551 cites W1444952417 @default.
- W3216979551 cites W1883063772 @default.
- W3216979551 cites W1971676152 @default.
- W3216979551 cites W1985460844 @default.
- W3216979551 cites W1986760892 @default.
- W3216979551 cites W1989148990 @default.
- W3216979551 cites W1995341919 @default.
- W3216979551 cites W2030397499 @default.
- W3216979551 cites W2031183907 @default.
- W3216979551 cites W2055146208 @default.
- W3216979551 cites W2070560454 @default.
- W3216979551 cites W2092718745 @default.
- W3216979551 cites W2125965138 @default.
- W3216979551 cites W2290402024 @default.
- W3216979551 cites W2290883490 @default.
- W3216979551 cites W2564781577 @default.
- W3216979551 cites W2593991500 @default.
- W3216979551 cites W2612473079 @default.
- W3216979551 cites W2758741657 @default.
- W3216979551 cites W2790729248 @default.
- W3216979551 cites W2796319428 @default.
- W3216979551 cites W2809430074 @default.
- W3216979551 cites W2809533018 @default.
- W3216979551 cites W2907672705 @default.
- W3216979551 cites W2940493495 @default.
- W3216979551 cites W2955950556 @default.
- W3216979551 cites W2965837582 @default.
- W3216979551 cites W2967907195 @default.
- W3216979551 cites W2971517191 @default.
- W3216979551 cites W2984619469 @default.
- W3216979551 cites W2988729496 @default.
- W3216979551 cites W2995254025 @default.
- W3216979551 cites W3014544816 @default.
- W3216979551 cites W3018026610 @default.
- W3216979551 cites W3025641346 @default.
- W3216979551 cites W3033675321 @default.
- W3216979551 cites W3035503061 @default.
- W3216979551 cites W610200145 @default.
- W3216979551 cites W793104346 @default.
- W3216979551 doi "https://doi.org/10.4018/ijsir.2022010103" @default.
- W3216979551 hasPublicationYear "2021" @default.
- W3216979551 type Work @default.
- W3216979551 sameAs 3216979551 @default.
- W3216979551 citedByCount "3" @default.
- W3216979551 countsByYear W32169795512022 @default.
- W3216979551 countsByYear W32169795512023 @default.
- W3216979551 crossrefType "journal-article" @default.
- W3216979551 hasAuthorship W3216979551A5001919742 @default.
- W3216979551 hasAuthorship W3216979551A5072665694 @default.
- W3216979551 hasConcept C111919701 @default.
- W3216979551 hasConcept C11413529 @default.
- W3216979551 hasConcept C119857082 @default.
- W3216979551 hasConcept C124101348 @default.
- W3216979551 hasConcept C126255220 @default.
- W3216979551 hasConcept C127705205 @default.
- W3216979551 hasConcept C137836250 @default.
- W3216979551 hasConcept C154945302 @default.
- W3216979551 hasConcept C194387892 @default.
- W3216979551 hasConcept C2987595161 @default.
- W3216979551 hasConcept C33923547 @default.
- W3216979551 hasConcept C41008148 @default.
- W3216979551 hasConcept C50644808 @default.
- W3216979551 hasConceptScore W3216979551C111919701 @default.
- W3216979551 hasConceptScore W3216979551C11413529 @default.
- W3216979551 hasConceptScore W3216979551C119857082 @default.
- W3216979551 hasConceptScore W3216979551C124101348 @default.
- W3216979551 hasConceptScore W3216979551C126255220 @default.
- W3216979551 hasConceptScore W3216979551C127705205 @default.
- W3216979551 hasConceptScore W3216979551C137836250 @default.
- W3216979551 hasConceptScore W3216979551C154945302 @default.
- W3216979551 hasConceptScore W3216979551C194387892 @default.
- W3216979551 hasConceptScore W3216979551C2987595161 @default.
- W3216979551 hasConceptScore W3216979551C33923547 @default.
- W3216979551 hasConceptScore W3216979551C41008148 @default.
- W3216979551 hasConceptScore W3216979551C50644808 @default.
- W3216979551 hasIssue "1" @default.
- W3216979551 hasLocation W32169795511 @default.
- W3216979551 hasOpenAccess W3216979551 @default.
- W3216979551 hasPrimaryLocation W32169795511 @default.
- W3216979551 hasRelatedWork W2061090821 @default.
- W3216979551 hasRelatedWork W2353480216 @default.
- W3216979551 hasRelatedWork W2356957943 @default.
- W3216979551 hasRelatedWork W2375625581 @default.
- W3216979551 hasRelatedWork W2376929669 @default.
- W3216979551 hasRelatedWork W2380313759 @default.
- W3216979551 hasRelatedWork W3095130276 @default.
- W3216979551 hasRelatedWork W4293197012 @default.
- W3216979551 hasRelatedWork W4297811537 @default.
- W3216979551 hasRelatedWork W1629725936 @default.
- W3216979551 hasVolume "13" @default.
- W3216979551 isParatext "false" @default.