Matches in SemOpenAlex for { <https://semopenalex.org/work/W3216992405> ?p ?o ?g. }
- W3216992405 endingPage "222.e3" @default.
- W3216992405 startingPage "211" @default.
- W3216992405 abstract "To develop and evaluate a high-dimensional, data-driven model to identify patients at high risk of clinical deterioration from routinely collected electronic health record (EHR) data.In this single-center, retrospective cohort study, 488 patients with single-ventricle and shunt-dependent congenital heart disease <6 months old were admitted to the cardiac intensive care unit before stage 2 palliation between 2014 and 2019. Using machine-learning techniques, we developed the Intensive care Warning Index (I-WIN), which systematically assessed 1028 regularly collected EHR variables (vital signs, medications, laboratory tests, and diagnoses) to identify patients in the cardiac intensive care unit at elevated risk of clinical deterioration. An ensemble of 5 extreme gradient boosting models was developed and validated on 203 cases (130 emergent endotracheal intubations, 34 cardiac arrests requiring cardiopulmonary resuscitation, 10 extracorporeal membrane oxygenation cannulations, and 29 cardiac arrests requiring cardiopulmonary resuscitation onto extracorporeal membrane oxygenation) and 378 control periods from 446 patients.At 4 hours before deterioration, the model achieved an area under the receiver operating characteristic curve of 0.92 (95% confidence interval, 0.84-0.98), 0.881 sensitivity, 0.776 positive predictive value, 0.862 specificity, and 0.571 Brier skill score. Performance remained high at 8 hours before deterioration with 0.815 (0.688-0.921) area under the receiver operating characteristic curve.I-WIN accurately predicted deterioration events in critically-ill infants with high-risk congenital heart disease up to 8 hours before deterioration, potentially allowing clinicians to target interventions. We propose a paradigm shift from conventional expert consensus-based selection of risk factors to a data-driven, machine-learning methodology for risk prediction. With the increased availability of data capture in EHRs, I-WIN can be extended to broader applications in data-rich environments in critical care." @default.
- W3216992405 created "2021-12-06" @default.
- W3216992405 creator A5011685742 @default.
- W3216992405 creator A5023592446 @default.
- W3216992405 creator A5029190313 @default.
- W3216992405 creator A5041390159 @default.
- W3216992405 creator A5063011252 @default.
- W3216992405 creator A5078961261 @default.
- W3216992405 creator A5081292167 @default.
- W3216992405 creator A5083934567 @default.
- W3216992405 creator A5089943759 @default.
- W3216992405 date "2022-07-01" @default.
- W3216992405 modified "2023-10-12" @default.
- W3216992405 title "Early prediction of clinical deterioration using data-driven machine-learning modeling of electronic health records" @default.
- W3216992405 cites W1934602670 @default.
- W3216992405 cites W1964378530 @default.
- W3216992405 cites W1994682257 @default.
- W3216992405 cites W2011642287 @default.
- W3216992405 cites W2075318595 @default.
- W3216992405 cites W2122087674 @default.
- W3216992405 cites W2130835317 @default.
- W3216992405 cites W2155982020 @default.
- W3216992405 cites W2183275698 @default.
- W3216992405 cites W2337276162 @default.
- W3216992405 cites W2535578619 @default.
- W3216992405 cites W2595524454 @default.
- W3216992405 cites W2601448961 @default.
- W3216992405 cites W2739259195 @default.
- W3216992405 cites W2776803885 @default.
- W3216992405 cites W2802425040 @default.
- W3216992405 cites W2811095531 @default.
- W3216992405 cites W2886309256 @default.
- W3216992405 cites W2902644322 @default.
- W3216992405 cites W2910050642 @default.
- W3216992405 cites W2913702106 @default.
- W3216992405 cites W2917205064 @default.
- W3216992405 cites W2934399013 @default.
- W3216992405 cites W2953241949 @default.
- W3216992405 cites W2961920916 @default.
- W3216992405 cites W3102476541 @default.
- W3216992405 cites W3114184571 @default.
- W3216992405 cites W4252684946 @default.
- W3216992405 doi "https://doi.org/10.1016/j.jtcvs.2021.10.060" @default.
- W3216992405 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34949457" @default.
- W3216992405 hasPublicationYear "2022" @default.
- W3216992405 type Work @default.
- W3216992405 sameAs 3216992405 @default.
- W3216992405 citedByCount "12" @default.
- W3216992405 countsByYear W32169924052022 @default.
- W3216992405 countsByYear W32169924052023 @default.
- W3216992405 crossrefType "journal-article" @default.
- W3216992405 hasAuthorship W3216992405A5011685742 @default.
- W3216992405 hasAuthorship W3216992405A5023592446 @default.
- W3216992405 hasAuthorship W3216992405A5029190313 @default.
- W3216992405 hasAuthorship W3216992405A5041390159 @default.
- W3216992405 hasAuthorship W3216992405A5063011252 @default.
- W3216992405 hasAuthorship W3216992405A5078961261 @default.
- W3216992405 hasAuthorship W3216992405A5081292167 @default.
- W3216992405 hasAuthorship W3216992405A5083934567 @default.
- W3216992405 hasAuthorship W3216992405A5089943759 @default.
- W3216992405 hasBestOaLocation W32169924051 @default.
- W3216992405 hasConcept C118552586 @default.
- W3216992405 hasConcept C126322002 @default.
- W3216992405 hasConcept C141071460 @default.
- W3216992405 hasConcept C167135981 @default.
- W3216992405 hasConcept C177713679 @default.
- W3216992405 hasConcept C194828623 @default.
- W3216992405 hasConcept C195910791 @default.
- W3216992405 hasConcept C2776376669 @default.
- W3216992405 hasConcept C2776858399 @default.
- W3216992405 hasConcept C2776890885 @default.
- W3216992405 hasConcept C2777055891 @default.
- W3216992405 hasConcept C2778165595 @default.
- W3216992405 hasConcept C2780724011 @default.
- W3216992405 hasConcept C2987404301 @default.
- W3216992405 hasConcept C58471807 @default.
- W3216992405 hasConcept C71924100 @default.
- W3216992405 hasConceptScore W3216992405C118552586 @default.
- W3216992405 hasConceptScore W3216992405C126322002 @default.
- W3216992405 hasConceptScore W3216992405C141071460 @default.
- W3216992405 hasConceptScore W3216992405C167135981 @default.
- W3216992405 hasConceptScore W3216992405C177713679 @default.
- W3216992405 hasConceptScore W3216992405C194828623 @default.
- W3216992405 hasConceptScore W3216992405C195910791 @default.
- W3216992405 hasConceptScore W3216992405C2776376669 @default.
- W3216992405 hasConceptScore W3216992405C2776858399 @default.
- W3216992405 hasConceptScore W3216992405C2776890885 @default.
- W3216992405 hasConceptScore W3216992405C2777055891 @default.
- W3216992405 hasConceptScore W3216992405C2778165595 @default.
- W3216992405 hasConceptScore W3216992405C2780724011 @default.
- W3216992405 hasConceptScore W3216992405C2987404301 @default.
- W3216992405 hasConceptScore W3216992405C58471807 @default.
- W3216992405 hasConceptScore W3216992405C71924100 @default.
- W3216992405 hasFunder F4320309099 @default.
- W3216992405 hasIssue "1" @default.
- W3216992405 hasLocation W32169924051 @default.
- W3216992405 hasLocation W32169924052 @default.
- W3216992405 hasOpenAccess W3216992405 @default.