Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217029056> ?p ?o ?g. }
- W3217029056 endingPage "3088" @default.
- W3217029056 startingPage "3088" @default.
- W3217029056 abstract "In the paper, the comparison between the efficiency of using artificial intelligence methods and the efficiency of using classical methods in modelling the industrial processes is made, considering as a case study the separation process of the 18O isotope. Firstly, the behavior of the considered isotopic separation process is learned using neural networks. The comparison between the efficiency of these methods is highlighted by the simulations of the process model, using the mentioned modelling techniques. In this context, the final part of the paper presents the proposed model being simulated in different scenarios that can occur in practice, thus resulting in some interesting interpretations and conclusions. The paper proves the feasibility of using artificial intelligence methods for industrial processes modeling; the obtained models being intended for use in designing automatic control systems." @default.
- W3217029056 created "2021-12-06" @default.
- W3217029056 creator A5007639810 @default.
- W3217029056 creator A5024577489 @default.
- W3217029056 creator A5050301541 @default.
- W3217029056 creator A5050515741 @default.
- W3217029056 creator A5066737019 @default.
- W3217029056 creator A5070315937 @default.
- W3217029056 creator A5077292923 @default.
- W3217029056 creator A5087994261 @default.
- W3217029056 date "2021-11-30" @default.
- W3217029056 modified "2023-10-16" @default.
- W3217029056 title "AI versus Classic Methods in Modelling Isotopic Separation Processes: Efficiency Comparison" @default.
- W3217029056 cites W1966814098 @default.
- W3217029056 cites W1976049214 @default.
- W3217029056 cites W1983168408 @default.
- W3217029056 cites W1986460856 @default.
- W3217029056 cites W1997323925 @default.
- W3217029056 cites W1997332674 @default.
- W3217029056 cites W1999376735 @default.
- W3217029056 cites W2000575162 @default.
- W3217029056 cites W2004830604 @default.
- W3217029056 cites W2050222544 @default.
- W3217029056 cites W2053692447 @default.
- W3217029056 cites W2055562792 @default.
- W3217029056 cites W2087397205 @default.
- W3217029056 cites W2135114914 @default.
- W3217029056 cites W2168886370 @default.
- W3217029056 cites W2303916843 @default.
- W3217029056 cites W2335781652 @default.
- W3217029056 cites W2411876646 @default.
- W3217029056 cites W2500621968 @default.
- W3217029056 cites W2522998154 @default.
- W3217029056 cites W2537392793 @default.
- W3217029056 cites W2770503877 @default.
- W3217029056 cites W2770989646 @default.
- W3217029056 cites W2803924889 @default.
- W3217029056 cites W2872129767 @default.
- W3217029056 cites W2886468097 @default.
- W3217029056 cites W2902532766 @default.
- W3217029056 cites W2914196457 @default.
- W3217029056 cites W2925179312 @default.
- W3217029056 cites W2942231644 @default.
- W3217029056 cites W2953463686 @default.
- W3217029056 cites W2962053451 @default.
- W3217029056 cites W2962951515 @default.
- W3217029056 cites W2967979370 @default.
- W3217029056 cites W2974654212 @default.
- W3217029056 cites W2976937848 @default.
- W3217029056 cites W3031657662 @default.
- W3217029056 cites W3134666186 @default.
- W3217029056 cites W3138840119 @default.
- W3217029056 cites W3187547324 @default.
- W3217029056 cites W3193591473 @default.
- W3217029056 cites W3199514852 @default.
- W3217029056 cites W3199563906 @default.
- W3217029056 cites W3200865879 @default.
- W3217029056 cites W3202078491 @default.
- W3217029056 cites W3205964290 @default.
- W3217029056 doi "https://doi.org/10.3390/math9233088" @default.
- W3217029056 hasPublicationYear "2021" @default.
- W3217029056 type Work @default.
- W3217029056 sameAs 3217029056 @default.
- W3217029056 citedByCount "1" @default.
- W3217029056 countsByYear W32170290562022 @default.
- W3217029056 crossrefType "journal-article" @default.
- W3217029056 hasAuthorship W3217029056A5007639810 @default.
- W3217029056 hasAuthorship W3217029056A5024577489 @default.
- W3217029056 hasAuthorship W3217029056A5050301541 @default.
- W3217029056 hasAuthorship W3217029056A5050515741 @default.
- W3217029056 hasAuthorship W3217029056A5066737019 @default.
- W3217029056 hasAuthorship W3217029056A5070315937 @default.
- W3217029056 hasAuthorship W3217029056A5077292923 @default.
- W3217029056 hasAuthorship W3217029056A5087994261 @default.
- W3217029056 hasBestOaLocation W32170290561 @default.
- W3217029056 hasConcept C111919701 @default.
- W3217029056 hasConcept C119857082 @default.
- W3217029056 hasConcept C127413603 @default.
- W3217029056 hasConcept C151730666 @default.
- W3217029056 hasConcept C154945302 @default.
- W3217029056 hasConcept C174998907 @default.
- W3217029056 hasConcept C21547014 @default.
- W3217029056 hasConcept C2776061190 @default.
- W3217029056 hasConcept C2779343474 @default.
- W3217029056 hasConcept C2780232233 @default.
- W3217029056 hasConcept C41008148 @default.
- W3217029056 hasConcept C42360764 @default.
- W3217029056 hasConcept C50644808 @default.
- W3217029056 hasConcept C76956256 @default.
- W3217029056 hasConcept C86803240 @default.
- W3217029056 hasConcept C98045186 @default.
- W3217029056 hasConceptScore W3217029056C111919701 @default.
- W3217029056 hasConceptScore W3217029056C119857082 @default.
- W3217029056 hasConceptScore W3217029056C127413603 @default.
- W3217029056 hasConceptScore W3217029056C151730666 @default.
- W3217029056 hasConceptScore W3217029056C154945302 @default.
- W3217029056 hasConceptScore W3217029056C174998907 @default.
- W3217029056 hasConceptScore W3217029056C21547014 @default.