Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217104838> ?p ?o ?g. }
- W3217104838 endingPage "9402" @default.
- W3217104838 startingPage "9393" @default.
- W3217104838 abstract "To realize the widespread use of thermoelectric (TE) applications, developing low-cost, eco-friendly, and high-performance TE materials with an optimal band gap is essential. We find that the lapieite group─rock-forming minerals buried deep in the earth─with the general formula MCuPnQ3 (M = Ni, Pt, and Pd; Pn = Sb and Bi; and Q = S and Se) comprise the key metrics to become “Thermoelectric Rockstars”. Our detailed chemical and phonon analyses show that the coexistence of weak covalent, partially ionic, and metavalent bonds and the stereoactive lone-pair electrons on Pn benefit the thermoelectric performance of the lapieite group. In PdCuBiSe3, for example, the elongated and soft Cu–Q and Pn–Q bonds along the c-axis synergistically suppress the lattice heat transport (κL) to 0.3 W m–1 K–1 and improve the power factor to 3 mW m–1 K–2 at 600 K, approaching the so-called “phonon-glass electron-crystal” paradigm. Likewise, the other members of the lapieite group achieve a high TE performance. The band structure and Fermi surface analyses indicate that the high band degeneracy (Nv = 11) contributes to their high TE performance. Thus, the minerals of the lapieite group, having nontoxic and earth-abundant elements, such as the Ni-based ones, open up a quick path for developing new practical TE materials, awaiting further experimental validations." @default.
- W3217104838 created "2021-12-06" @default.
- W3217104838 creator A5020765038 @default.
- W3217104838 creator A5086785633 @default.
- W3217104838 date "2021-12-01" @default.
- W3217104838 modified "2023-09-26" @default.
- W3217104838 title "Mind the Mines: Lapieite Minerals with Ultralow Lattice Thermal Conductivity and High Power Factor for Thermoelectricity" @default.
- W3217104838 cites W1536879103 @default.
- W3217104838 cites W1974579672 @default.
- W3217104838 cites W1979150579 @default.
- W3217104838 cites W1980627345 @default.
- W3217104838 cites W1982133696 @default.
- W3217104838 cites W1982952953 @default.
- W3217104838 cites W1986029790 @default.
- W3217104838 cites W2000287325 @default.
- W3217104838 cites W2000857547 @default.
- W3217104838 cites W2002590365 @default.
- W3217104838 cites W2008000249 @default.
- W3217104838 cites W2017347525 @default.
- W3217104838 cites W2042938036 @default.
- W3217104838 cites W2045048386 @default.
- W3217104838 cites W2051427315 @default.
- W3217104838 cites W2054704030 @default.
- W3217104838 cites W2058221878 @default.
- W3217104838 cites W2067983335 @default.
- W3217104838 cites W2068994203 @default.
- W3217104838 cites W2078338131 @default.
- W3217104838 cites W2085093563 @default.
- W3217104838 cites W2088043604 @default.
- W3217104838 cites W2105733071 @default.
- W3217104838 cites W2112466037 @default.
- W3217104838 cites W2120145199 @default.
- W3217104838 cites W2123051705 @default.
- W3217104838 cites W2123988204 @default.
- W3217104838 cites W2130947827 @default.
- W3217104838 cites W2176688416 @default.
- W3217104838 cites W2283466638 @default.
- W3217104838 cites W2287864279 @default.
- W3217104838 cites W2313067229 @default.
- W3217104838 cites W2325443625 @default.
- W3217104838 cites W2512805591 @default.
- W3217104838 cites W2532303863 @default.
- W3217104838 cites W2535328381 @default.
- W3217104838 cites W2551323975 @default.
- W3217104838 cites W2587209320 @default.
- W3217104838 cites W2606539894 @default.
- W3217104838 cites W2608848905 @default.
- W3217104838 cites W2609478146 @default.
- W3217104838 cites W2787951070 @default.
- W3217104838 cites W2797152608 @default.
- W3217104838 cites W2837134492 @default.
- W3217104838 cites W2895518900 @default.
- W3217104838 cites W2901344618 @default.
- W3217104838 cites W2902350857 @default.
- W3217104838 cites W2909627514 @default.
- W3217104838 cites W2913419483 @default.
- W3217104838 cites W2929776595 @default.
- W3217104838 cites W2934077144 @default.
- W3217104838 cites W2936753083 @default.
- W3217104838 cites W2939550625 @default.
- W3217104838 cites W2950135542 @default.
- W3217104838 cites W2963258351 @default.
- W3217104838 cites W2967040866 @default.
- W3217104838 cites W2971450376 @default.
- W3217104838 cites W2991484617 @default.
- W3217104838 cites W3014267345 @default.
- W3217104838 cites W3025401382 @default.
- W3217104838 cites W3033245675 @default.
- W3217104838 cites W3041926054 @default.
- W3217104838 cites W3047000084 @default.
- W3217104838 cites W3104171795 @default.
- W3217104838 cites W3106875938 @default.
- W3217104838 cites W3111420544 @default.
- W3217104838 cites W3112712618 @default.
- W3217104838 cites W3113102942 @default.
- W3217104838 cites W3116251804 @default.
- W3217104838 cites W3136136323 @default.
- W3217104838 cites W3139259709 @default.
- W3217104838 cites W3147762206 @default.
- W3217104838 cites W3153902872 @default.
- W3217104838 cites W3158456839 @default.
- W3217104838 cites W3164274349 @default.
- W3217104838 cites W3170569547 @default.
- W3217104838 cites W3180868251 @default.
- W3217104838 cites W3189442022 @default.
- W3217104838 cites W3191451717 @default.
- W3217104838 cites W3193322807 @default.
- W3217104838 cites W3193395350 @default.
- W3217104838 cites W3196062235 @default.
- W3217104838 cites W4299860884 @default.
- W3217104838 doi "https://doi.org/10.1021/acs.chemmater.1c03318" @default.
- W3217104838 hasPublicationYear "2021" @default.
- W3217104838 type Work @default.
- W3217104838 sameAs 3217104838 @default.
- W3217104838 citedByCount "4" @default.
- W3217104838 countsByYear W32171048382022 @default.
- W3217104838 countsByYear W32171048382023 @default.
- W3217104838 crossrefType "journal-article" @default.