Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217110623> ?p ?o ?g. }
- W3217110623 endingPage "e0260622" @default.
- W3217110623 startingPage "e0260622" @default.
- W3217110623 abstract "Ticks and tick-borne diseases represent a growing public health threat in North America and Europe. The number of ticks, their geographical distribution, and the incidence of tick-borne diseases, like Lyme disease, are all on the rise. Accurate, real-time tick-image identification through a smartphone app or similar platform could help mitigate this threat by informing users of the risks associated with encountered ticks and by providing researchers and public health agencies with additional data on tick activity and geographic range. Here we outline the requirements for such a system, present a model that meets those requirements, and discuss remaining challenges and frontiers in automated tick identification. We compiled a user-generated dataset of more than 12,000 images of the three most common tick species found on humans in the U.S.: Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. We used image augmentation to further increase the size of our dataset to more than 90,000 images. Here we report the development and validation of a convolutional neural network which we call TickIDNet, that scores an 87.8% identification accuracy across all three species, outperforming the accuracy of identifications done by a member of the general public or healthcare professionals. However, the model fails to match the performance of experts with formal entomological training. We find that image quality, particularly the size of the tick in the image (measured in pixels), plays a significant role in the network's ability to correctly identify an image: images where the tick is small are less likely to be correctly identified because of the small object detection problem in deep learning. TickIDNet's performance can be increased by using confidence thresholds to introduce an unsure class and building image submission pipelines that encourage better quality photos. Our findings suggest that deep learning represents a promising frontier for tick identification that should be further explored and deployed as part of the toolkit for addressing the public health consequences of tick-borne diseases." @default.
- W3217110623 created "2021-12-06" @default.
- W3217110623 creator A5000024415 @default.
- W3217110623 creator A5006208201 @default.
- W3217110623 creator A5062548424 @default.
- W3217110623 creator A5076090151 @default.
- W3217110623 creator A5086326598 @default.
- W3217110623 date "2021-12-02" @default.
- W3217110623 modified "2023-10-17" @default.
- W3217110623 title "Identification of public submitted tick images: A neural network approach" @default.
- W3217110623 cites W2006617902 @default.
- W3217110623 cites W2057536936 @default.
- W3217110623 cites W2083653245 @default.
- W3217110623 cites W2126969588 @default.
- W3217110623 cites W2133866452 @default.
- W3217110623 cites W2276448010 @default.
- W3217110623 cites W2364603973 @default.
- W3217110623 cites W2400234465 @default.
- W3217110623 cites W2413367505 @default.
- W3217110623 cites W2419594259 @default.
- W3217110623 cites W2552831235 @default.
- W3217110623 cites W2581082771 @default.
- W3217110623 cites W2594090922 @default.
- W3217110623 cites W2600291485 @default.
- W3217110623 cites W2752747624 @default.
- W3217110623 cites W2772155220 @default.
- W3217110623 cites W2783438677 @default.
- W3217110623 cites W2791805110 @default.
- W3217110623 cites W2802296577 @default.
- W3217110623 cites W2886281300 @default.
- W3217110623 cites W2898280479 @default.
- W3217110623 cites W2903923858 @default.
- W3217110623 cites W2913222451 @default.
- W3217110623 cites W2962970995 @default.
- W3217110623 cites W2963801405 @default.
- W3217110623 cites W2967142604 @default.
- W3217110623 cites W2996367417 @default.
- W3217110623 cites W3013211776 @default.
- W3217110623 cites W3040431401 @default.
- W3217110623 cites W3057139875 @default.
- W3217110623 cites W3083956316 @default.
- W3217110623 cites W3095854737 @default.
- W3217110623 cites W3097822161 @default.
- W3217110623 cites W3102564565 @default.
- W3217110623 cites W3112911519 @default.
- W3217110623 cites W3119192484 @default.
- W3217110623 cites W3119740665 @default.
- W3217110623 cites W3174251985 @default.
- W3217110623 doi "https://doi.org/10.1371/journal.pone.0260622" @default.
- W3217110623 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34855822" @default.
- W3217110623 hasPublicationYear "2021" @default.
- W3217110623 type Work @default.
- W3217110623 sameAs 3217110623 @default.
- W3217110623 citedByCount "2" @default.
- W3217110623 countsByYear W32171106232022 @default.
- W3217110623 countsByYear W32171106232023 @default.
- W3217110623 crossrefType "journal-article" @default.
- W3217110623 hasAuthorship W3217110623A5000024415 @default.
- W3217110623 hasAuthorship W3217110623A5006208201 @default.
- W3217110623 hasAuthorship W3217110623A5062548424 @default.
- W3217110623 hasAuthorship W3217110623A5076090151 @default.
- W3217110623 hasAuthorship W3217110623A5086326598 @default.
- W3217110623 hasBestOaLocation W32171106231 @default.
- W3217110623 hasConcept C116834253 @default.
- W3217110623 hasConcept C154945302 @default.
- W3217110623 hasConcept C159047783 @default.
- W3217110623 hasConcept C18903297 @default.
- W3217110623 hasConcept C2776127032 @default.
- W3217110623 hasConcept C2776427669 @default.
- W3217110623 hasConcept C2777553296 @default.
- W3217110623 hasConcept C2779620486 @default.
- W3217110623 hasConcept C2779901558 @default.
- W3217110623 hasConcept C2781453105 @default.
- W3217110623 hasConcept C41008148 @default.
- W3217110623 hasConcept C81363708 @default.
- W3217110623 hasConcept C86803240 @default.
- W3217110623 hasConceptScore W3217110623C116834253 @default.
- W3217110623 hasConceptScore W3217110623C154945302 @default.
- W3217110623 hasConceptScore W3217110623C159047783 @default.
- W3217110623 hasConceptScore W3217110623C18903297 @default.
- W3217110623 hasConceptScore W3217110623C2776127032 @default.
- W3217110623 hasConceptScore W3217110623C2776427669 @default.
- W3217110623 hasConceptScore W3217110623C2777553296 @default.
- W3217110623 hasConceptScore W3217110623C2779620486 @default.
- W3217110623 hasConceptScore W3217110623C2779901558 @default.
- W3217110623 hasConceptScore W3217110623C2781453105 @default.
- W3217110623 hasConceptScore W3217110623C41008148 @default.
- W3217110623 hasConceptScore W3217110623C81363708 @default.
- W3217110623 hasConceptScore W3217110623C86803240 @default.
- W3217110623 hasFunder F4320332162 @default.
- W3217110623 hasIssue "12" @default.
- W3217110623 hasLocation W32171106231 @default.
- W3217110623 hasLocation W32171106232 @default.
- W3217110623 hasLocation W32171106233 @default.
- W3217110623 hasLocation W32171106234 @default.
- W3217110623 hasLocation W32171106235 @default.
- W3217110623 hasOpenAccess W3217110623 @default.
- W3217110623 hasPrimaryLocation W32171106231 @default.