Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217142489> ?p ?o ?g. }
- W3217142489 abstract "Symmetry fractionalization (SF) on topological excitations is one of the most remarkable quantum phenomena in topological orders with symmetry, i.e., symmetry-enriched topological phases. While much progress has been theoretically and experimentally made in 2D, the understanding on SF in 3D is far from complete. A long-standing challenge is to understand SF on looplike topological excitations which are spatially extended objects. In this work, we construct a powerful topological-field-theoretical framework approach for 3D topological orders, which leads to a systematic characterization and classification of SF. For systems with Abelian gauge groups ($G_g$) and Abelian symmetry groups ($G_s$), we successfully establish equivalence classes that lead to a finite number of patterns of SF, although there are notoriously infinite number of Lagrangian-descriptions of the system. We compute topologically distinct types of fractional symmetry charges carried by particles. Then, for each type, we compute topologically distinct statistical phases of braiding processes among loop excitations and external symmetry fluxes. As a result, we are able to unambiguously list all physical observables for each pattern of SF. We present detailed calculations on many concrete examples. As an example, we find that the SF in an untwisted $mathbb{Z}_2times mathbb{Z}_2$ topological order with $mathbb{Z}_2$ symmetry is classified by $ (mathbb{Z}_2)^6oplus (mathbb{Z}_2)^2oplus (mathbb{Z}_2)^2oplus (mathbb{Z}_2)^2$. If the topological order is twisted, the classification reduces to $(mathbb{Z}_2)^6$ in which particle excitations always carry integer charge. Pure algebraic formalism of the classification is given by: $ bigoplus_{nu_i} mathcal H^4 ( G_gleftthreetimes_{nu_i}G_s, U (1)) /Gamma_omega ({nu_i}) ,$. Several future directions are proposed." @default.
- W3217142489 created "2021-12-06" @default.
- W3217142489 creator A5032088288 @default.
- W3217142489 creator A5041849777 @default.
- W3217142489 creator A5051905769 @default.
- W3217142489 date "2022-05-27" @default.
- W3217142489 modified "2023-10-17" @default.
- W3217142489 title "Fractionalizing global symmetry on looplike topological excitations" @default.
- W3217142489 cites W1481272418 @default.
- W3217142489 cites W1493523146 @default.
- W3217142489 cites W1494603465 @default.
- W3217142489 cites W1510374214 @default.
- W3217142489 cites W1535487243 @default.
- W3217142489 cites W1572209861 @default.
- W3217142489 cites W1721674566 @default.
- W3217142489 cites W1722803391 @default.
- W3217142489 cites W1964122681 @default.
- W3217142489 cites W1964914120 @default.
- W3217142489 cites W1965487657 @default.
- W3217142489 cites W1967475705 @default.
- W3217142489 cites W1968792593 @default.
- W3217142489 cites W1976341577 @default.
- W3217142489 cites W1979591111 @default.
- W3217142489 cites W1984939111 @default.
- W3217142489 cites W1984960928 @default.
- W3217142489 cites W1986343453 @default.
- W3217142489 cites W1988720078 @default.
- W3217142489 cites W2003095492 @default.
- W3217142489 cites W2007695974 @default.
- W3217142489 cites W2008267560 @default.
- W3217142489 cites W2016061011 @default.
- W3217142489 cites W2022170535 @default.
- W3217142489 cites W2028038483 @default.
- W3217142489 cites W2028682659 @default.
- W3217142489 cites W2029930602 @default.
- W3217142489 cites W2039699066 @default.
- W3217142489 cites W2040250179 @default.
- W3217142489 cites W2059538679 @default.
- W3217142489 cites W2060980884 @default.
- W3217142489 cites W2064985490 @default.
- W3217142489 cites W2065234896 @default.
- W3217142489 cites W2087157159 @default.
- W3217142489 cites W2092760676 @default.
- W3217142489 cites W2093737252 @default.
- W3217142489 cites W2097938713 @default.
- W3217142489 cites W2105077826 @default.
- W3217142489 cites W2141192973 @default.
- W3217142489 cites W2152240519 @default.
- W3217142489 cites W2198718718 @default.
- W3217142489 cites W2262020987 @default.
- W3217142489 cites W2269694707 @default.
- W3217142489 cites W2276917270 @default.
- W3217142489 cites W2277444610 @default.
- W3217142489 cites W2280843209 @default.
- W3217142489 cites W2329262656 @default.
- W3217142489 cites W2332124114 @default.
- W3217142489 cites W2462292704 @default.
- W3217142489 cites W2479153330 @default.
- W3217142489 cites W2514726469 @default.
- W3217142489 cites W2515841534 @default.
- W3217142489 cites W2516358564 @default.
- W3217142489 cites W2534191796 @default.
- W3217142489 cites W2563479286 @default.
- W3217142489 cites W2569095706 @default.
- W3217142489 cites W2583143340 @default.
- W3217142489 cites W2586849272 @default.
- W3217142489 cites W2621062138 @default.
- W3217142489 cites W2742475931 @default.
- W3217142489 cites W2763922164 @default.
- W3217142489 cites W2767188896 @default.
- W3217142489 cites W2790066816 @default.
- W3217142489 cites W2885106062 @default.
- W3217142489 cites W2898961250 @default.
- W3217142489 cites W2912667231 @default.
- W3217142489 cites W2941855852 @default.
- W3217142489 cites W2972634784 @default.
- W3217142489 cites W2974009797 @default.
- W3217142489 cites W2976090991 @default.
- W3217142489 cites W3022633097 @default.
- W3217142489 cites W3031671971 @default.
- W3217142489 cites W3033567253 @default.
- W3217142489 cites W3034609680 @default.
- W3217142489 cites W3092023347 @default.
- W3217142489 cites W3101764907 @default.
- W3217142489 cites W3101772659 @default.
- W3217142489 cites W3103644943 @default.
- W3217142489 cites W3104623909 @default.
- W3217142489 cites W3106237044 @default.
- W3217142489 cites W3106340422 @default.
- W3217142489 cites W3106960009 @default.
- W3217142489 cites W3110060920 @default.
- W3217142489 cites W3127236165 @default.
- W3217142489 cites W3134636319 @default.
- W3217142489 cites W3136837012 @default.
- W3217142489 cites W3155519195 @default.
- W3217142489 cites W3155547782 @default.
- W3217142489 cites W3160186183 @default.
- W3217142489 cites W3193727789 @default.
- W3217142489 cites W3194490697 @default.
- W3217142489 cites W3204501867 @default.