Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217161574> ?p ?o ?g. }
- W3217161574 abstract "LiDAR (short for Light Detection And Ranging or Laser Imaging, Detection, And Ranging) technology can be used to provide detailed three-dimensional elevation maps of urban and rural landscapes. To date, airborne LiDAR imaging has been predominantly confined to the environmental and archaeological domains. However, the geographically granular and open-source nature of this data also lends itself to an array of societal, organizational and business applications where geo-demographic type data is utilised. Arguably, the complexity involved in processing this multi-dimensional data has thus far restricted its broader adoption. In this paper, we propose a series of convenient task-agnostic tile elevation embeddings to address this challenge, using recent advances from unsupervised Deep Learning. We test the potential of our embeddings by predicting seven English indices of deprivation (2019) for small geographies in the Greater London area. These indices cover a range of socio-economic outcomes and serve as a proxy for a wide variety of downstream tasks to which the embeddings can be applied. We consider the suitability of this data not just on its own but also as an auxiliary source of data in combination with demographic features, thus providing a realistic use case for the embeddings. Having trialled various model/embedding configurations, we find that our best performing embeddings lead to Root-Mean-Squared-Error (RMSE) improvements of up to 21% over using standard demographic features alone. We also demonstrate how our embedding pipeline, using Deep Learning combined with K-means clustering, produces coherent tile segments which allow the latent embedding features to be interpreted." @default.
- W3217161574 created "2021-12-06" @default.
- W3217161574 creator A5002785512 @default.
- W3217161574 creator A5011142751 @default.
- W3217161574 creator A5060698272 @default.
- W3217161574 date "2021-12-02" @default.
- W3217161574 modified "2023-09-27" @default.
- W3217161574 title "Deep residential representations: Using unsupervised learning to unlock elevation data for geo-demographic prediction." @default.
- W3217161574 cites W1504362025 @default.
- W3217161574 cites W1686810756 @default.
- W3217161574 cites W1973337438 @default.
- W3217161574 cites W2016424197 @default.
- W3217161574 cites W2066704859 @default.
- W3217161574 cites W2085230521 @default.
- W3217161574 cites W2095709400 @default.
- W3217161574 cites W2108598243 @default.
- W3217161574 cites W2434182841 @default.
- W3217161574 cites W2513506629 @default.
- W3217161574 cites W2554777878 @default.
- W3217161574 cites W2595065447 @default.
- W3217161574 cites W2737444374 @default.
- W3217161574 cites W2768348081 @default.
- W3217161574 cites W2769397026 @default.
- W3217161574 cites W2796096089 @default.
- W3217161574 cites W2809708080 @default.
- W3217161574 cites W2856780089 @default.
- W3217161574 cites W2888794057 @default.
- W3217161574 cites W2905754522 @default.
- W3217161574 cites W2907738775 @default.
- W3217161574 cites W2915971115 @default.
- W3217161574 cites W2939734061 @default.
- W3217161574 cites W2955425717 @default.
- W3217161574 cites W2962742544 @default.
- W3217161574 cites W2987303464 @default.
- W3217161574 cites W2994342516 @default.
- W3217161574 cites W3005680577 @default.
- W3217161574 cites W3008439211 @default.
- W3217161574 cites W3009276589 @default.
- W3217161574 cites W3028547196 @default.
- W3217161574 cites W3028928772 @default.
- W3217161574 cites W3036982689 @default.
- W3217161574 cites W3037788579 @default.
- W3217161574 cites W3121601308 @default.
- W3217161574 cites W3124054352 @default.
- W3217161574 cites W3124815665 @default.
- W3217161574 cites W3129857656 @default.
- W3217161574 cites W3132859298 @default.
- W3217161574 cites W3139003984 @default.
- W3217161574 cites W3140318999 @default.
- W3217161574 cites W3189911029 @default.
- W3217161574 cites W343636949 @default.
- W3217161574 hasPublicationYear "2021" @default.
- W3217161574 type Work @default.
- W3217161574 sameAs 3217161574 @default.
- W3217161574 citedByCount "0" @default.
- W3217161574 crossrefType "posted-content" @default.
- W3217161574 hasAuthorship W3217161574A5002785512 @default.
- W3217161574 hasAuthorship W3217161574A5011142751 @default.
- W3217161574 hasAuthorship W3217161574A5060698272 @default.
- W3217161574 hasConcept C105795698 @default.
- W3217161574 hasConcept C108583219 @default.
- W3217161574 hasConcept C115051666 @default.
- W3217161574 hasConcept C119857082 @default.
- W3217161574 hasConcept C124101348 @default.
- W3217161574 hasConcept C139945424 @default.
- W3217161574 hasConcept C154945302 @default.
- W3217161574 hasConcept C159985019 @default.
- W3217161574 hasConcept C192562407 @default.
- W3217161574 hasConcept C199360897 @default.
- W3217161574 hasConcept C204323151 @default.
- W3217161574 hasConcept C205649164 @default.
- W3217161574 hasConcept C2522767166 @default.
- W3217161574 hasConcept C2524010 @default.
- W3217161574 hasConcept C2780148112 @default.
- W3217161574 hasConcept C33923547 @default.
- W3217161574 hasConcept C37054046 @default.
- W3217161574 hasConcept C41008148 @default.
- W3217161574 hasConcept C41608201 @default.
- W3217161574 hasConcept C43521106 @default.
- W3217161574 hasConcept C51399673 @default.
- W3217161574 hasConcept C62649853 @default.
- W3217161574 hasConcept C73555534 @default.
- W3217161574 hasConcept C76155785 @default.
- W3217161574 hasConcept C8038995 @default.
- W3217161574 hasConceptScore W3217161574C105795698 @default.
- W3217161574 hasConceptScore W3217161574C108583219 @default.
- W3217161574 hasConceptScore W3217161574C115051666 @default.
- W3217161574 hasConceptScore W3217161574C119857082 @default.
- W3217161574 hasConceptScore W3217161574C124101348 @default.
- W3217161574 hasConceptScore W3217161574C139945424 @default.
- W3217161574 hasConceptScore W3217161574C154945302 @default.
- W3217161574 hasConceptScore W3217161574C159985019 @default.
- W3217161574 hasConceptScore W3217161574C192562407 @default.
- W3217161574 hasConceptScore W3217161574C199360897 @default.
- W3217161574 hasConceptScore W3217161574C204323151 @default.
- W3217161574 hasConceptScore W3217161574C205649164 @default.
- W3217161574 hasConceptScore W3217161574C2522767166 @default.
- W3217161574 hasConceptScore W3217161574C2524010 @default.
- W3217161574 hasConceptScore W3217161574C2780148112 @default.
- W3217161574 hasConceptScore W3217161574C33923547 @default.