Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217203425> ?p ?o ?g. }
- W3217203425 endingPage "325" @default.
- W3217203425 startingPage "305" @default.
- W3217203425 abstract "AbstractMachine learning has rapidly gained traction in a variety of fields, including science, healthcare, engineering, and biotechnology, in recent years owing to its effective functioning mechanism. Health care has always been a key priority for any government as the industry has made significant progress by using machine learning, artificial intelligence, and deep learning for disease prediction and diagnosis. The central aspect of this paper is to evaluate different machine learning algorithms and classification techniques in order to detect and predict different chronic diseases. The paper discusses supervised classification strategies for detecting diseases such as cancer, psychological disorders, and cardiac disorders, as well as various bioinformatics and biomedical research challenges. The comparison between classification techniques like support vector machines, logistic regression, decision trees, random forest, and Naïve Bayes classifiers has been observed in numerous diseases. The algorithms that are specifically applied in the medical applications and in healthcare sector enabled the clinical experts and physicians to watchdog, diagnose, and monitor the disease effectively and perform appropriate measures in the shortest possible duration. Decision support systems benefit the physicians for effective and timely decision-making capabilities in case of chronic diseases. The paper reviews the implementation of machine learning and deep learning which has undoubtedly contributed toward health informatics, healthcare systems including bioinformatics. After discussing the techniques and comparison of numerous classification algorithms in several diseases, the ones which have efficiently produced an appropriate result in an early detection of diseases have been highlighted. In order to emphasize the issues that must be considered while implementing the methodologies and classification algorithms for an early illness detection system, several future directions are described.KeywordsBioinformaticsHealthcareChronic disease detectionMachine learningDeep learningImage processingCancer detectionPsychiatric disorderEarly disease detectionDisease prediction" @default.
- W3217203425 created "2021-12-06" @default.
- W3217203425 creator A5005619596 @default.
- W3217203425 creator A5008323745 @default.
- W3217203425 date "2021-11-22" @default.
- W3217203425 modified "2023-10-14" @default.
- W3217203425 title "Machine Learning, Deep Learning and Image Processing for Healthcare: A Crux for Detection and Prediction of Disease" @default.
- W3217203425 cites W1483598450 @default.
- W3217203425 cites W1901616594 @default.
- W3217203425 cites W2154953776 @default.
- W3217203425 cites W2537813697 @default.
- W3217203425 cites W2579213716 @default.
- W3217203425 cites W2790660115 @default.
- W3217203425 cites W2806046197 @default.
- W3217203425 cites W2883817443 @default.
- W3217203425 cites W2897093100 @default.
- W3217203425 cites W2898836677 @default.
- W3217203425 cites W2901424910 @default.
- W3217203425 cites W2905442369 @default.
- W3217203425 cites W2908300307 @default.
- W3217203425 cites W2911437787 @default.
- W3217203425 cites W2922513851 @default.
- W3217203425 cites W2944541202 @default.
- W3217203425 cites W2946000658 @default.
- W3217203425 cites W2949170216 @default.
- W3217203425 cites W2961661279 @default.
- W3217203425 cites W2979478843 @default.
- W3217203425 cites W2979499110 @default.
- W3217203425 cites W2981752454 @default.
- W3217203425 cites W2982253098 @default.
- W3217203425 cites W2984353870 @default.
- W3217203425 cites W2995452999 @default.
- W3217203425 cites W2995783451 @default.
- W3217203425 cites W2997318833 @default.
- W3217203425 cites W2997606798 @default.
- W3217203425 cites W2997919088 @default.
- W3217203425 cites W2999441819 @default.
- W3217203425 cites W3004008215 @default.
- W3217203425 cites W3004246244 @default.
- W3217203425 cites W3006616141 @default.
- W3217203425 cites W3007935259 @default.
- W3217203425 cites W3010288125 @default.
- W3217203425 cites W3011200991 @default.
- W3217203425 cites W3011427405 @default.
- W3217203425 cites W3014921497 @default.
- W3217203425 cites W3015777944 @default.
- W3217203425 cites W3016932420 @default.
- W3217203425 cites W3022483099 @default.
- W3217203425 cites W3022754982 @default.
- W3217203425 cites W3023321484 @default.
- W3217203425 cites W3025325803 @default.
- W3217203425 cites W3035448870 @default.
- W3217203425 cites W3036755187 @default.
- W3217203425 cites W3042462196 @default.
- W3217203425 cites W3045617901 @default.
- W3217203425 cites W3047837751 @default.
- W3217203425 cites W3049002444 @default.
- W3217203425 cites W3081963296 @default.
- W3217203425 cites W3087802780 @default.
- W3217203425 cites W3094464459 @default.
- W3217203425 cites W3097233067 @default.
- W3217203425 cites W3117630153 @default.
- W3217203425 cites W3119601299 @default.
- W3217203425 cites W3121023256 @default.
- W3217203425 cites W3122221904 @default.
- W3217203425 cites W3122718941 @default.
- W3217203425 cites W3125597081 @default.
- W3217203425 cites W3125994571 @default.
- W3217203425 cites W3126215364 @default.
- W3217203425 cites W3127321867 @default.
- W3217203425 cites W3130441055 @default.
- W3217203425 cites W3136834909 @default.
- W3217203425 cites W3204632561 @default.
- W3217203425 cites W4213429812 @default.
- W3217203425 doi "https://doi.org/10.1007/978-981-16-6285-0_25" @default.
- W3217203425 hasPublicationYear "2021" @default.
- W3217203425 type Work @default.
- W3217203425 sameAs 3217203425 @default.
- W3217203425 citedByCount "0" @default.
- W3217203425 crossrefType "book-chapter" @default.
- W3217203425 hasAuthorship W3217203425A5005619596 @default.
- W3217203425 hasAuthorship W3217203425A5008323745 @default.
- W3217203425 hasConcept C107327155 @default.
- W3217203425 hasConcept C108583219 @default.
- W3217203425 hasConcept C119857082 @default.
- W3217203425 hasConcept C12267149 @default.
- W3217203425 hasConcept C154945302 @default.
- W3217203425 hasConcept C160735492 @default.
- W3217203425 hasConcept C162324750 @default.
- W3217203425 hasConcept C169258074 @default.
- W3217203425 hasConcept C41008148 @default.
- W3217203425 hasConcept C50522688 @default.
- W3217203425 hasConcept C52001869 @default.
- W3217203425 hasConcept C63527458 @default.
- W3217203425 hasConcept C84525736 @default.
- W3217203425 hasConceptScore W3217203425C107327155 @default.
- W3217203425 hasConceptScore W3217203425C108583219 @default.
- W3217203425 hasConceptScore W3217203425C119857082 @default.