Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217234095> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3217234095 endingPage "613" @default.
- W3217234095 startingPage "567" @default.
- W3217234095 abstract "We address the problem of modeling constrained hospital resources in the midst of the COVID-19 pandemic in order to inform decision-makers of future demand and assess the societal value of possible interventions. For broad applicability, we focus on the common yet challenging scenario where patient-level data for a region of interest are not available. Instead, given daily admissions counts, we model aggregated counts of observed resource use, such as the number of patients in the general ward, in the intensive care unit, or on a ventilator. In order to explain how individual patient trajectories produce these counts, we propose an aggregate count explicit-duration hidden Markov model, nicknamed the ACED-HMM, with an interpretable, compact parameterization. We develop an Approximate Bayesian Computation approach that draws samples from the posterior distribution over the model's transition and duration parameters given aggregate counts from a specific location, thus adapting the model to a region or individual hospital site of interest. Samples from this posterior can then be used to produce future forecasts of any counts of interest. Using data from the United States and the United Kingdom, we show our mechanistic approach provides competitive probabilistic forecasts for the future even as the dynamics of the pandemic shift. Furthermore, we show how our model provides insight about recovery probabilities or length of stay distributions, and we suggest its potential to answer challenging what-if questions about the societal value of possible interventions." @default.
- W3217234095 created "2021-12-06" @default.
- W3217234095 creator A5000247698 @default.
- W3217234095 creator A5006559598 @default.
- W3217234095 creator A5019533620 @default.
- W3217234095 creator A5021933953 @default.
- W3217234095 creator A5058890009 @default.
- W3217234095 creator A5061952939 @default.
- W3217234095 creator A5065011257 @default.
- W3217234095 date "2021-04-28" @default.
- W3217234095 modified "2023-09-24" @default.
- W3217234095 title "Approximate Bayesian Computation for an Explicit-Duration Hidden Markov Model of COVID-19 Hospital Trajectories" @default.
- W3217234095 hasPublicationYear "2021" @default.
- W3217234095 type Work @default.
- W3217234095 sameAs 3217234095 @default.
- W3217234095 citedByCount "0" @default.
- W3217234095 crossrefType "journal-article" @default.
- W3217234095 hasAuthorship W3217234095A5000247698 @default.
- W3217234095 hasAuthorship W3217234095A5006559598 @default.
- W3217234095 hasAuthorship W3217234095A5019533620 @default.
- W3217234095 hasAuthorship W3217234095A5021933953 @default.
- W3217234095 hasAuthorship W3217234095A5058890009 @default.
- W3217234095 hasAuthorship W3217234095A5061952939 @default.
- W3217234095 hasAuthorship W3217234095A5065011257 @default.
- W3217234095 hasConcept C105795698 @default.
- W3217234095 hasConcept C107673813 @default.
- W3217234095 hasConcept C112758219 @default.
- W3217234095 hasConcept C11413529 @default.
- W3217234095 hasConcept C114289077 @default.
- W3217234095 hasConcept C124952713 @default.
- W3217234095 hasConcept C142362112 @default.
- W3217234095 hasConcept C142724271 @default.
- W3217234095 hasConcept C149782125 @default.
- W3217234095 hasConcept C154945302 @default.
- W3217234095 hasConcept C159985019 @default.
- W3217234095 hasConcept C192562407 @default.
- W3217234095 hasConcept C23224414 @default.
- W3217234095 hasConcept C2776214188 @default.
- W3217234095 hasConcept C2779134260 @default.
- W3217234095 hasConcept C2779377595 @default.
- W3217234095 hasConcept C3008058167 @default.
- W3217234095 hasConcept C33923547 @default.
- W3217234095 hasConcept C41008148 @default.
- W3217234095 hasConcept C45374587 @default.
- W3217234095 hasConcept C4679612 @default.
- W3217234095 hasConcept C49937458 @default.
- W3217234095 hasConcept C524204448 @default.
- W3217234095 hasConcept C71924100 @default.
- W3217234095 hasConcept C89623803 @default.
- W3217234095 hasConceptScore W3217234095C105795698 @default.
- W3217234095 hasConceptScore W3217234095C107673813 @default.
- W3217234095 hasConceptScore W3217234095C112758219 @default.
- W3217234095 hasConceptScore W3217234095C11413529 @default.
- W3217234095 hasConceptScore W3217234095C114289077 @default.
- W3217234095 hasConceptScore W3217234095C124952713 @default.
- W3217234095 hasConceptScore W3217234095C142362112 @default.
- W3217234095 hasConceptScore W3217234095C142724271 @default.
- W3217234095 hasConceptScore W3217234095C149782125 @default.
- W3217234095 hasConceptScore W3217234095C154945302 @default.
- W3217234095 hasConceptScore W3217234095C159985019 @default.
- W3217234095 hasConceptScore W3217234095C192562407 @default.
- W3217234095 hasConceptScore W3217234095C23224414 @default.
- W3217234095 hasConceptScore W3217234095C2776214188 @default.
- W3217234095 hasConceptScore W3217234095C2779134260 @default.
- W3217234095 hasConceptScore W3217234095C2779377595 @default.
- W3217234095 hasConceptScore W3217234095C3008058167 @default.
- W3217234095 hasConceptScore W3217234095C33923547 @default.
- W3217234095 hasConceptScore W3217234095C41008148 @default.
- W3217234095 hasConceptScore W3217234095C45374587 @default.
- W3217234095 hasConceptScore W3217234095C4679612 @default.
- W3217234095 hasConceptScore W3217234095C49937458 @default.
- W3217234095 hasConceptScore W3217234095C524204448 @default.
- W3217234095 hasConceptScore W3217234095C71924100 @default.
- W3217234095 hasConceptScore W3217234095C89623803 @default.
- W3217234095 hasLocation W32172340951 @default.
- W3217234095 hasOpenAccess W3217234095 @default.
- W3217234095 hasPrimaryLocation W32172340951 @default.
- W3217234095 isParatext "false" @default.
- W3217234095 isRetracted "false" @default.
- W3217234095 magId "3217234095" @default.
- W3217234095 workType "article" @default.