Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217249498> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3217249498 abstract "In any country's economic growth, agriculture plays a crucial function. In crops management, machine learning techniques are mainly employed, following the control of farming conditions and the management of animals. They are used in agriculture to anticipate crop yield and quality and the production of livestock. As the population increases, the climate changes are frequent and the resources are limited, it becomes a challenge to meet food demands of the people today. Machine learning (ML) is the mechanism for driving this advanced technology. It allows to the machine for learn without being programmed directly. The agricultural machinery enabled by ML and Internet of Things (IoT) is an important part of the future farm revolution. There has been a rigorous discussion on IOT based network technology involving network architecture and layers. In this research paper described a systematic examination of agricultural with ML applications. The focus areas are the prediction of soil factors including organic carbon and moisture content in the prediction of crop yields, diseases and the detection of weeds in crops as well as species." @default.
- W3217249498 created "2021-12-06" @default.
- W3217249498 creator A5036979082 @default.
- W3217249498 creator A5044830269 @default.
- W3217249498 creator A5064309659 @default.
- W3217249498 date "2021-10-07" @default.
- W3217249498 modified "2023-09-26" @default.
- W3217249498 title "Applications of Statistical Machine Learning Algorithms in Agriculture Management Processes" @default.
- W3217249498 cites W2086583262 @default.
- W3217249498 cites W2161392645 @default.
- W3217249498 cites W2792230618 @default.
- W3217249498 cites W2799473505 @default.
- W3217249498 cites W2805142011 @default.
- W3217249498 cites W2809602495 @default.
- W3217249498 cites W2891765392 @default.
- W3217249498 cites W2895093564 @default.
- W3217249498 cites W2922184469 @default.
- W3217249498 cites W2967553555 @default.
- W3217249498 cites W2968041550 @default.
- W3217249498 cites W2995054944 @default.
- W3217249498 cites W2995466895 @default.
- W3217249498 cites W2996764525 @default.
- W3217249498 cites W3010655531 @default.
- W3217249498 cites W3036750509 @default.
- W3217249498 cites W3120697286 @default.
- W3217249498 cites W3165319944 @default.
- W3217249498 doi "https://doi.org/10.1109/ispcc53510.2021.9609476" @default.
- W3217249498 hasPublicationYear "2021" @default.
- W3217249498 type Work @default.
- W3217249498 sameAs 3217249498 @default.
- W3217249498 citedByCount "3" @default.
- W3217249498 countsByYear W32172494982022 @default.
- W3217249498 crossrefType "proceedings-article" @default.
- W3217249498 hasAuthorship W3217249498A5036979082 @default.
- W3217249498 hasAuthorship W3217249498A5044830269 @default.
- W3217249498 hasAuthorship W3217249498A5064309659 @default.
- W3217249498 hasConcept C11413529 @default.
- W3217249498 hasConcept C118518473 @default.
- W3217249498 hasConcept C119857082 @default.
- W3217249498 hasConcept C120217122 @default.
- W3217249498 hasConcept C127413603 @default.
- W3217249498 hasConcept C144024400 @default.
- W3217249498 hasConcept C149923435 @default.
- W3217249498 hasConcept C154945302 @default.
- W3217249498 hasConcept C18903297 @default.
- W3217249498 hasConcept C2908647359 @default.
- W3217249498 hasConcept C41008148 @default.
- W3217249498 hasConcept C86803240 @default.
- W3217249498 hasConcept C88463610 @default.
- W3217249498 hasConceptScore W3217249498C11413529 @default.
- W3217249498 hasConceptScore W3217249498C118518473 @default.
- W3217249498 hasConceptScore W3217249498C119857082 @default.
- W3217249498 hasConceptScore W3217249498C120217122 @default.
- W3217249498 hasConceptScore W3217249498C127413603 @default.
- W3217249498 hasConceptScore W3217249498C144024400 @default.
- W3217249498 hasConceptScore W3217249498C149923435 @default.
- W3217249498 hasConceptScore W3217249498C154945302 @default.
- W3217249498 hasConceptScore W3217249498C18903297 @default.
- W3217249498 hasConceptScore W3217249498C2908647359 @default.
- W3217249498 hasConceptScore W3217249498C41008148 @default.
- W3217249498 hasConceptScore W3217249498C86803240 @default.
- W3217249498 hasConceptScore W3217249498C88463610 @default.
- W3217249498 hasLocation W32172494981 @default.
- W3217249498 hasOpenAccess W3217249498 @default.
- W3217249498 hasPrimaryLocation W32172494981 @default.
- W3217249498 hasRelatedWork W1504731330 @default.
- W3217249498 hasRelatedWork W2098510136 @default.
- W3217249498 hasRelatedWork W2353782740 @default.
- W3217249498 hasRelatedWork W2382920002 @default.
- W3217249498 hasRelatedWork W2620640898 @default.
- W3217249498 hasRelatedWork W3154800126 @default.
- W3217249498 hasRelatedWork W3201212491 @default.
- W3217249498 hasRelatedWork W4320489071 @default.
- W3217249498 hasRelatedWork W4321608687 @default.
- W3217249498 hasRelatedWork W4367055784 @default.
- W3217249498 isParatext "false" @default.
- W3217249498 isRetracted "false" @default.
- W3217249498 magId "3217249498" @default.
- W3217249498 workType "article" @default.