Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217263491> ?p ?o ?g. }
- W3217263491 abstract "The classical Heisenberg model in two spatial dimensions constitutes one of the most paradigmatic spin models, taking an important role in statistical and condensed matter physics to understand magnetism. Still, despite its paradigmatic character and the widely accepted ban of a (continuous) spontaneous symmetry breaking, controversies remain whether the model exhibits a phase transition at finite temperature. Importantly, the model can be interpreted as a lattice discretization of the $O(3)$ non-linear sigma model in $1+1$ dimensions, one of the simplest quantum field theories encompassing crucial features of celebrated higher-dimensional ones (like quantum chromodynamics in $3+1$ dimensions), namely the phenomenon of asymptotic freedom. This should also exclude finite-temperature transitions, but lattice effects might play a significant role in correcting the mainstream picture. In this work, we make use of state-of-the-art tensor network approaches, representing the classical partition function in the thermodynamic limit over a large range of temperatures, to comprehensively explore the correlation structure for Gibbs states. By implementing an $SU(2)$ symmetry in our two-dimensional tensor network contraction scheme, we are able to handle very large effective bond dimensions of the environment up to $chi_E^text{eff} sim 1500$, a feature that is crucial in detecting phase transitions. With decreasing temperatures, we find a rapidly diverging correlation length, whose behaviour is apparently compatible with the two main contradictory hypotheses known in the literature, namely a finite-$T$ transition and asymptotic freedom, though with a slight preference for the second." @default.
- W3217263491 created "2021-12-06" @default.
- W3217263491 creator A5000771982 @default.
- W3217263491 creator A5017550207 @default.
- W3217263491 creator A5020314133 @default.
- W3217263491 creator A5040462967 @default.
- W3217263491 creator A5070491792 @default.
- W3217263491 date "2021-11-29" @default.
- W3217263491 modified "2023-10-16" @default.
- W3217263491 title "The classical two-dimensional Heisenberg model revisited: An $SU(2)$-symmetric tensor network study" @default.
- W3217263491 cites W1483289337 @default.
- W3217263491 cites W1516440625 @default.
- W3217263491 cites W1553535237 @default.
- W3217263491 cites W1560118662 @default.
- W3217263491 cites W1560711627 @default.
- W3217263491 cites W1667260828 @default.
- W3217263491 cites W1673377087 @default.
- W3217263491 cites W1915064834 @default.
- W3217263491 cites W1922629554 @default.
- W3217263491 cites W1977771836 @default.
- W3217263491 cites W1978918009 @default.
- W3217263491 cites W1979614182 @default.
- W3217263491 cites W1982038242 @default.
- W3217263491 cites W1988831567 @default.
- W3217263491 cites W1991395163 @default.
- W3217263491 cites W1994383802 @default.
- W3217263491 cites W1996102725 @default.
- W3217263491 cites W1997801737 @default.
- W3217263491 cites W2008317504 @default.
- W3217263491 cites W2008822316 @default.
- W3217263491 cites W2015823186 @default.
- W3217263491 cites W2017214660 @default.
- W3217263491 cites W2017738335 @default.
- W3217263491 cites W2021169492 @default.
- W3217263491 cites W2024689496 @default.
- W3217263491 cites W2025011256 @default.
- W3217263491 cites W2028360847 @default.
- W3217263491 cites W2028996569 @default.
- W3217263491 cites W2029950163 @default.
- W3217263491 cites W2039018025 @default.
- W3217263491 cites W2042228716 @default.
- W3217263491 cites W2044807917 @default.
- W3217263491 cites W2049415658 @default.
- W3217263491 cites W2055519393 @default.
- W3217263491 cites W2057874777 @default.
- W3217263491 cites W2064070753 @default.
- W3217263491 cites W2065298953 @default.
- W3217263491 cites W2067377441 @default.
- W3217263491 cites W2068561656 @default.
- W3217263491 cites W2068894496 @default.
- W3217263491 cites W2074447877 @default.
- W3217263491 cites W2086860422 @default.
- W3217263491 cites W2087838357 @default.
- W3217263491 cites W2090558939 @default.
- W3217263491 cites W2095282794 @default.
- W3217263491 cites W2096391265 @default.
- W3217263491 cites W2130232240 @default.
- W3217263491 cites W2150775289 @default.
- W3217263491 cites W2153760289 @default.
- W3217263491 cites W2154036089 @default.
- W3217263491 cites W2164685311 @default.
- W3217263491 cites W2167325579 @default.
- W3217263491 cites W2204144149 @default.
- W3217263491 cites W2264847961 @default.
- W3217263491 cites W2265068845 @default.
- W3217263491 cites W2333788710 @default.
- W3217263491 cites W2474948085 @default.
- W3217263491 cites W2484084770 @default.
- W3217263491 cites W2486643958 @default.
- W3217263491 cites W2535048027 @default.
- W3217263491 cites W2611624894 @default.
- W3217263491 cites W2790440782 @default.
- W3217263491 cites W2795130983 @default.
- W3217263491 cites W2850301387 @default.
- W3217263491 cites W2901089295 @default.
- W3217263491 cites W2908267189 @default.
- W3217263491 cites W2911963587 @default.
- W3217263491 cites W2948465781 @default.
- W3217263491 cites W2960240620 @default.
- W3217263491 cites W2963469706 @default.
- W3217263491 cites W2964230325 @default.
- W3217263491 cites W2981327589 @default.
- W3217263491 cites W2982428562 @default.
- W3217263491 cites W2985191283 @default.
- W3217263491 cites W3000186759 @default.
- W3217263491 cites W3007446925 @default.
- W3217263491 cites W3016370368 @default.
- W3217263491 cites W3021348370 @default.
- W3217263491 cites W3021916787 @default.
- W3217263491 cites W3080325072 @default.
- W3217263491 cites W3099497510 @default.
- W3217263491 cites W3099824173 @default.
- W3217263491 cites W3100184264 @default.
- W3217263491 cites W3103639412 @default.
- W3217263491 cites W3103780871 @default.
- W3217263491 cites W3104733680 @default.
- W3217263491 cites W3105270571 @default.
- W3217263491 cites W3120232208 @default.
- W3217263491 cites W382441907 @default.
- W3217263491 cites W4206301310 @default.