Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217320210> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3217320210 abstract "The creation of policing strategies and the implementation of crime prevention and control programmes rely heavily on crime prediction. In India, the number of cognizable offences are gradually rising. These offences include those that are covered by the Indian Penal Code as well as those covered by a variety of Special and Local Laws. In this study, various machine learning algorithms are used to analyze data related to crime which will give the behaviors in crime over an area, that might be helpful in crime prevention. Classification Algorithms such as KNN, Random Forest, Adaptive Boosting Classifier, Gradient Boosting Classifier, and Extra Trees Classifier were tested individually on a crime dataset based in South Bangalore. Later, these five algorithms were combined to achieve better results using Voting Classifier Technique in order to balance out their individual weaknesses." @default.
- W3217320210 created "2021-12-06" @default.
- W3217320210 creator A5014492345 @default.
- W3217320210 creator A5085428965 @default.
- W3217320210 creator A5085502674 @default.
- W3217320210 date "2021-09-15" @default.
- W3217320210 modified "2023-09-26" @default.
- W3217320210 title "Crime Prediction and Forecasting using Voting Classifier" @default.
- W3217320210 cites W2101361401 @default.
- W3217320210 cites W2116091691 @default.
- W3217320210 cites W2140334956 @default.
- W3217320210 cites W2158978294 @default.
- W3217320210 cites W2169738360 @default.
- W3217320210 cites W2592442970 @default.
- W3217320210 cites W2760894977 @default.
- W3217320210 cites W2772602535 @default.
- W3217320210 cites W3113107588 @default.
- W3217320210 doi "https://doi.org/10.1109/icecct52121.2021.9616911" @default.
- W3217320210 hasPublicationYear "2021" @default.
- W3217320210 type Work @default.
- W3217320210 sameAs 3217320210 @default.
- W3217320210 citedByCount "2" @default.
- W3217320210 countsByYear W32173202102022 @default.
- W3217320210 countsByYear W32173202102023 @default.
- W3217320210 crossrefType "proceedings-article" @default.
- W3217320210 hasAuthorship W3217320210A5014492345 @default.
- W3217320210 hasAuthorship W3217320210A5085428965 @default.
- W3217320210 hasAuthorship W3217320210A5085502674 @default.
- W3217320210 hasConcept C119857082 @default.
- W3217320210 hasConcept C154945302 @default.
- W3217320210 hasConcept C169258074 @default.
- W3217320210 hasConcept C17744445 @default.
- W3217320210 hasConcept C199539241 @default.
- W3217320210 hasConcept C41008148 @default.
- W3217320210 hasConcept C46686674 @default.
- W3217320210 hasConcept C520049643 @default.
- W3217320210 hasConcept C70153297 @default.
- W3217320210 hasConcept C94625758 @default.
- W3217320210 hasConcept C95623464 @default.
- W3217320210 hasConceptScore W3217320210C119857082 @default.
- W3217320210 hasConceptScore W3217320210C154945302 @default.
- W3217320210 hasConceptScore W3217320210C169258074 @default.
- W3217320210 hasConceptScore W3217320210C17744445 @default.
- W3217320210 hasConceptScore W3217320210C199539241 @default.
- W3217320210 hasConceptScore W3217320210C41008148 @default.
- W3217320210 hasConceptScore W3217320210C46686674 @default.
- W3217320210 hasConceptScore W3217320210C520049643 @default.
- W3217320210 hasConceptScore W3217320210C70153297 @default.
- W3217320210 hasConceptScore W3217320210C94625758 @default.
- W3217320210 hasConceptScore W3217320210C95623464 @default.
- W3217320210 hasLocation W32173202101 @default.
- W3217320210 hasOpenAccess W3217320210 @default.
- W3217320210 hasPrimaryLocation W32173202101 @default.
- W3217320210 hasRelatedWork W3198811569 @default.
- W3217320210 hasRelatedWork W3200719183 @default.
- W3217320210 hasRelatedWork W3204641204 @default.
- W3217320210 hasRelatedWork W3212730154 @default.
- W3217320210 hasRelatedWork W4200057378 @default.
- W3217320210 hasRelatedWork W4249229055 @default.
- W3217320210 hasRelatedWork W4281400976 @default.
- W3217320210 hasRelatedWork W4288057626 @default.
- W3217320210 hasRelatedWork W4292182467 @default.
- W3217320210 hasRelatedWork W4293069612 @default.
- W3217320210 isParatext "false" @default.
- W3217320210 isRetracted "false" @default.
- W3217320210 magId "3217320210" @default.
- W3217320210 workType "article" @default.