Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217361805> ?p ?o ?g. }
- W3217361805 abstract "Optimizing chemical molecules for desired properties lies at the core of drug development. Despite initial successes made by deep generative models and reinforcement learning methods, these methods were mostly limited by the requirement of predefined attribute functions or parallel data with manually pre-compiled pairs of original and optimized molecules. In this paper, for the first time, we formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data through adversarial training strategies. Our model further enables both preservation of molecular contents and optimization of molecular properties through combining auxiliary guided-variational autoencoders and generative flow techniques. Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods." @default.
- W3217361805 created "2021-12-06" @default.
- W3217361805 creator A5016012780 @default.
- W3217361805 creator A5018967320 @default.
- W3217361805 creator A5030589527 @default.
- W3217361805 creator A5044707901 @default.
- W3217361805 creator A5075817762 @default.
- W3217361805 creator A5076162565 @default.
- W3217361805 date "2021-11-30" @default.
- W3217361805 modified "2023-10-11" @default.
- W3217361805 title "Molecular Attributes Transfer from Non-Parallel Data" @default.
- W3217361805 cites W10639359 @default.
- W3217361805 cites W1522301498 @default.
- W3217361805 cites W1866230956 @default.
- W3217361805 cites W1924770834 @default.
- W3217361805 cites W1966950894 @default.
- W3217361805 cites W1975147762 @default.
- W3217361805 cites W1977340881 @default.
- W3217361805 cites W2023818227 @default.
- W3217361805 cites W2066532920 @default.
- W3217361805 cites W2153246785 @default.
- W3217361805 cites W2160592148 @default.
- W3217361805 cites W2213735563 @default.
- W3217361805 cites W2412446857 @default.
- W3217361805 cites W2431962807 @default.
- W3217361805 cites W2605135824 @default.
- W3217361805 cites W2610148085 @default.
- W3217361805 cites W2617566453 @default.
- W3217361805 cites W2746340587 @default.
- W3217361805 cites W2786565076 @default.
- W3217361805 cites W2798838035 @default.
- W3217361805 cites W2805177834 @default.
- W3217361805 cites W2885765530 @default.
- W3217361805 cites W2902415322 @default.
- W3217361805 cites W2914442349 @default.
- W3217361805 cites W2945440166 @default.
- W3217361805 cites W2951004968 @default.
- W3217361805 cites W2956961449 @default.
- W3217361805 cites W2963028280 @default.
- W3217361805 cites W2963090522 @default.
- W3217361805 cites W2963207607 @default.
- W3217361805 cites W2963819570 @default.
- W3217361805 cites W2964222296 @default.
- W3217361805 cites W2966357564 @default.
- W3217361805 cites W2970971581 @default.
- W3217361805 cites W2981104283 @default.
- W3217361805 cites W2986779468 @default.
- W3217361805 cites W2992072991 @default.
- W3217361805 cites W2997058986 @default.
- W3217361805 cites W3035352643 @default.
- W3217361805 cites W3035399978 @default.
- W3217361805 cites W3040246664 @default.
- W3217361805 cites W3098269892 @default.
- W3217361805 cites W3114693970 @default.
- W3217361805 cites W3193532674 @default.
- W3217361805 doi "https://doi.org/10.48550/arxiv.2111.15146" @default.
- W3217361805 hasPublicationYear "2021" @default.
- W3217361805 type Work @default.
- W3217361805 sameAs 3217361805 @default.
- W3217361805 citedByCount "0" @default.
- W3217361805 crossrefType "posted-content" @default.
- W3217361805 hasAuthorship W3217361805A5016012780 @default.
- W3217361805 hasAuthorship W3217361805A5018967320 @default.
- W3217361805 hasAuthorship W3217361805A5030589527 @default.
- W3217361805 hasAuthorship W3217361805A5044707901 @default.
- W3217361805 hasAuthorship W3217361805A5075817762 @default.
- W3217361805 hasAuthorship W3217361805A5076162565 @default.
- W3217361805 hasBestOaLocation W32173618051 @default.
- W3217361805 hasConcept C119857082 @default.
- W3217361805 hasConcept C150899416 @default.
- W3217361805 hasConcept C154945302 @default.
- W3217361805 hasConcept C167966045 @default.
- W3217361805 hasConcept C2164484 @default.
- W3217361805 hasConcept C37736160 @default.
- W3217361805 hasConcept C39890363 @default.
- W3217361805 hasConcept C41008148 @default.
- W3217361805 hasConcept C76155785 @default.
- W3217361805 hasConcept C80444323 @default.
- W3217361805 hasConcept C97541855 @default.
- W3217361805 hasConceptScore W3217361805C119857082 @default.
- W3217361805 hasConceptScore W3217361805C150899416 @default.
- W3217361805 hasConceptScore W3217361805C154945302 @default.
- W3217361805 hasConceptScore W3217361805C167966045 @default.
- W3217361805 hasConceptScore W3217361805C2164484 @default.
- W3217361805 hasConceptScore W3217361805C37736160 @default.
- W3217361805 hasConceptScore W3217361805C39890363 @default.
- W3217361805 hasConceptScore W3217361805C41008148 @default.
- W3217361805 hasConceptScore W3217361805C76155785 @default.
- W3217361805 hasConceptScore W3217361805C80444323 @default.
- W3217361805 hasConceptScore W3217361805C97541855 @default.
- W3217361805 hasLocation W32173618051 @default.
- W3217361805 hasOpenAccess W3217361805 @default.
- W3217361805 hasPrimaryLocation W32173618051 @default.
- W3217361805 hasRelatedWork W2434014514 @default.
- W3217361805 hasRelatedWork W2919013397 @default.
- W3217361805 hasRelatedWork W2942539883 @default.
- W3217361805 hasRelatedWork W2963277051 @default.
- W3217361805 hasRelatedWork W2964157711 @default.
- W3217361805 hasRelatedWork W3039386753 @default.
- W3217361805 hasRelatedWork W3120345119 @default.