Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217375558> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3217375558 endingPage "121" @default.
- W3217375558 startingPage "112" @default.
- W3217375558 abstract "The proliferation of the Internet and social media usage creates enormous textual data (specifically, news content) on the web. The most proportion of contents primarily are unstructured. Extracting meaningful insights from unstructured content is nearly impossible or extremely hard, and time-consuming by human labor. Thus, automatic text classification has gained much attention from NLP experts in recent years. Several techniques have been developed to classify news text in high resource languages (e.g., English, Chinese, French). However, the automatic classification of Bengali news text is in a primitive stage to date. This paper investigates the six most popular machine learning techniques (such as Logistic Regression (LR), Support Vector Classifier (SVC), Decision Tree (DT), Multinomial Naive Bayes (MNB), Random Forest (RF), etc.) with Term Frequency-Inverse Document Frequency (TF-IDF) features for automatic sports news classification in Bengali. Due to the unavailability of benchmark corpus, this work also developed a Bengali news corpus (called BNeC) consisting of 43306 news documents with 202830 unique words in multiple classes: Cricket, Football, Tennis, and Athletics. Experimental results on the test dataset show that the Support Vector Classifier (SVC) with unigram+bigram+trigram feature space obtained the highest weighted f1-score of 97.60% than the other classifiers and feature combinations." @default.
- W3217375558 created "2021-12-06" @default.
- W3217375558 creator A5002138165 @default.
- W3217375558 creator A5021361292 @default.
- W3217375558 creator A5034564945 @default.
- W3217375558 date "2021-01-01" @default.
- W3217375558 modified "2023-10-14" @default.
- W3217375558 title "Multi-class Sports News Categorization using Machine Learning Techniques: Resource Creation and Evaluation" @default.
- W3217375558 cites W1565201084 @default.
- W3217375558 cites W2055841610 @default.
- W3217375558 cites W2123495014 @default.
- W3217375558 cites W2611282738 @default.
- W3217375558 cites W2774995230 @default.
- W3217375558 cites W2802642557 @default.
- W3217375558 cites W2953901787 @default.
- W3217375558 cites W2963279309 @default.
- W3217375558 cites W3028860567 @default.
- W3217375558 cites W3096107150 @default.
- W3217375558 cites W3114257334 @default.
- W3217375558 cites W3128437760 @default.
- W3217375558 cites W3135006863 @default.
- W3217375558 cites W3170705121 @default.
- W3217375558 cites W2900311247 @default.
- W3217375558 doi "https://doi.org/10.1016/j.procs.2021.11.002" @default.
- W3217375558 hasPublicationYear "2021" @default.
- W3217375558 type Work @default.
- W3217375558 sameAs 3217375558 @default.
- W3217375558 citedByCount "7" @default.
- W3217375558 countsByYear W32173755582022 @default.
- W3217375558 countsByYear W32173755582023 @default.
- W3217375558 crossrefType "journal-article" @default.
- W3217375558 hasAuthorship W3217375558A5002138165 @default.
- W3217375558 hasAuthorship W3217375558A5021361292 @default.
- W3217375558 hasAuthorship W3217375558A5034564945 @default.
- W3217375558 hasBestOaLocation W32173755581 @default.
- W3217375558 hasConcept C108757681 @default.
- W3217375558 hasConcept C119857082 @default.
- W3217375558 hasConcept C121332964 @default.
- W3217375558 hasConcept C12267149 @default.
- W3217375558 hasConcept C137546455 @default.
- W3217375558 hasConcept C154945302 @default.
- W3217375558 hasConcept C19235068 @default.
- W3217375558 hasConcept C204321447 @default.
- W3217375558 hasConcept C41008148 @default.
- W3217375558 hasConcept C52001869 @default.
- W3217375558 hasConcept C61797465 @default.
- W3217375558 hasConcept C62520636 @default.
- W3217375558 hasConcept C81758059 @default.
- W3217375558 hasConcept C83665646 @default.
- W3217375558 hasConcept C84525736 @default.
- W3217375558 hasConcept C95623464 @default.
- W3217375558 hasConceptScore W3217375558C108757681 @default.
- W3217375558 hasConceptScore W3217375558C119857082 @default.
- W3217375558 hasConceptScore W3217375558C121332964 @default.
- W3217375558 hasConceptScore W3217375558C12267149 @default.
- W3217375558 hasConceptScore W3217375558C137546455 @default.
- W3217375558 hasConceptScore W3217375558C154945302 @default.
- W3217375558 hasConceptScore W3217375558C19235068 @default.
- W3217375558 hasConceptScore W3217375558C204321447 @default.
- W3217375558 hasConceptScore W3217375558C41008148 @default.
- W3217375558 hasConceptScore W3217375558C52001869 @default.
- W3217375558 hasConceptScore W3217375558C61797465 @default.
- W3217375558 hasConceptScore W3217375558C62520636 @default.
- W3217375558 hasConceptScore W3217375558C81758059 @default.
- W3217375558 hasConceptScore W3217375558C83665646 @default.
- W3217375558 hasConceptScore W3217375558C84525736 @default.
- W3217375558 hasConceptScore W3217375558C95623464 @default.
- W3217375558 hasLocation W32173755581 @default.
- W3217375558 hasOpenAccess W3217375558 @default.
- W3217375558 hasPrimaryLocation W32173755581 @default.
- W3217375558 hasRelatedWork W1470425429 @default.
- W3217375558 hasRelatedWork W2183598011 @default.
- W3217375558 hasRelatedWork W2938810646 @default.
- W3217375558 hasRelatedWork W2971898452 @default.
- W3217375558 hasRelatedWork W3011860286 @default.
- W3217375558 hasRelatedWork W3133454186 @default.
- W3217375558 hasRelatedWork W3186233728 @default.
- W3217375558 hasRelatedWork W4287727283 @default.
- W3217375558 hasRelatedWork W4377964522 @default.
- W3217375558 hasRelatedWork W4384345534 @default.
- W3217375558 hasVolume "193" @default.
- W3217375558 isParatext "false" @default.
- W3217375558 isRetracted "false" @default.
- W3217375558 magId "3217375558" @default.
- W3217375558 workType "article" @default.