Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217382632> ?p ?o ?g. }
- W3217382632 endingPage "663" @default.
- W3217382632 startingPage "654" @default.
- W3217382632 abstract "The existing risk prediction models for chemotherapy-induced febrile neutropenia (FN) do not necessarily apply to real-life patients in different healthcare systems and the external validation of these models are often lacking. Our study evaluates whether a machine learning-based risk prediction model could outperform the previously introduced models, especially when validated against real-world patient data from another institution not used for model training.Using Turku University Hospital electronic medical records, we identified all patients who received chemotherapy for non-hematological cancer between the years 2010 and 2017 (N = 5879). An experimental surrogate endpoint was first-cycle neutropenic infection (NI), defined as grade IV neutropenia with serum C-reactive protein >10 mg/l. For predicting the risk of NI, a penalized regression model (Lasso) was developed. The model was externally validated in an independent dataset (N = 4594) from Tampere University Hospital.Lasso model accurately predicted NI risk with good accuracy (AUROC 0.84). In the validation cohort, the Lasso model outperformed two previously introduced, widely approved models, with AUROC 0.75. The variables selected by Lasso included granulocyte colony-stimulating factor (G-CSF) use, cancer type, pre-treatment neutrophil and thrombocyte count, intravenous treatment regimen, and the planned dose intensity. The same model predicted also FN, with AUROC 0.77, supporting the validity of NI as an endpoint.Our study demonstrates that real-world NI risk prediction can be improved with machine learning and that every difference in patient or treatment characteristics can have a significant impact on model performance. Here we outline a novel, externally validated approach which may hold potential to facilitate more targeted use of G-CSFs in the future." @default.
- W3217382632 created "2021-12-06" @default.
- W3217382632 creator A5005848551 @default.
- W3217382632 creator A5023592947 @default.
- W3217382632 creator A5026383617 @default.
- W3217382632 creator A5030021700 @default.
- W3217382632 creator A5035229217 @default.
- W3217382632 creator A5040882957 @default.
- W3217382632 creator A5062339398 @default.
- W3217382632 creator A5082176570 @default.
- W3217382632 creator A5088272806 @default.
- W3217382632 creator A5090418139 @default.
- W3217382632 date "2021-12-03" @default.
- W3217382632 modified "2023-10-16" @default.
- W3217382632 title "Improved risk prediction of chemotherapy‐induced neutropenia—model development and validation with real‐world data" @default.
- W3217382632 cites W1503247057 @default.
- W3217382632 cites W1940090105 @default.
- W3217382632 cites W1963900518 @default.
- W3217382632 cites W1969840975 @default.
- W3217382632 cites W1972433976 @default.
- W3217382632 cites W1998277689 @default.
- W3217382632 cites W2023099741 @default.
- W3217382632 cites W2026417873 @default.
- W3217382632 cites W2031497779 @default.
- W3217382632 cites W2082376914 @default.
- W3217382632 cites W2097360283 @default.
- W3217382632 cites W2112653328 @default.
- W3217382632 cites W2169403306 @default.
- W3217382632 cites W2171045400 @default.
- W3217382632 cites W2171642892 @default.
- W3217382632 cites W2328176404 @default.
- W3217382632 cites W2543518004 @default.
- W3217382632 cites W2580390950 @default.
- W3217382632 cites W2771411730 @default.
- W3217382632 cites W2810104551 @default.
- W3217382632 cites W2886571395 @default.
- W3217382632 cites W2888280674 @default.
- W3217382632 cites W2890053815 @default.
- W3217382632 cites W2892571161 @default.
- W3217382632 cites W3003018218 @default.
- W3217382632 cites W3048696092 @default.
- W3217382632 cites W3123097840 @default.
- W3217382632 cites W3182847164 @default.
- W3217382632 cites W3217382632 @default.
- W3217382632 cites W4294541781 @default.
- W3217382632 doi "https://doi.org/10.1002/cam4.4465" @default.
- W3217382632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34859963" @default.
- W3217382632 hasPublicationYear "2021" @default.
- W3217382632 type Work @default.
- W3217382632 sameAs 3217382632 @default.
- W3217382632 citedByCount "3" @default.
- W3217382632 countsByYear W32173826322021 @default.
- W3217382632 countsByYear W32173826322023 @default.
- W3217382632 crossrefType "journal-article" @default.
- W3217382632 hasAuthorship W3217382632A5005848551 @default.
- W3217382632 hasAuthorship W3217382632A5023592947 @default.
- W3217382632 hasAuthorship W3217382632A5026383617 @default.
- W3217382632 hasAuthorship W3217382632A5030021700 @default.
- W3217382632 hasAuthorship W3217382632A5035229217 @default.
- W3217382632 hasAuthorship W3217382632A5040882957 @default.
- W3217382632 hasAuthorship W3217382632A5062339398 @default.
- W3217382632 hasAuthorship W3217382632A5082176570 @default.
- W3217382632 hasAuthorship W3217382632A5088272806 @default.
- W3217382632 hasAuthorship W3217382632A5090418139 @default.
- W3217382632 hasBestOaLocation W32173826323 @default.
- W3217382632 hasConcept C112930515 @default.
- W3217382632 hasConcept C11783203 @default.
- W3217382632 hasConcept C119857082 @default.
- W3217382632 hasConcept C126322002 @default.
- W3217382632 hasConcept C136764020 @default.
- W3217382632 hasConcept C143998085 @default.
- W3217382632 hasConcept C177713679 @default.
- W3217382632 hasConcept C203092338 @default.
- W3217382632 hasConcept C2776694085 @default.
- W3217382632 hasConcept C2777063308 @default.
- W3217382632 hasConcept C2778850193 @default.
- W3217382632 hasConcept C2779134260 @default.
- W3217382632 hasConcept C2781413609 @default.
- W3217382632 hasConcept C2986432223 @default.
- W3217382632 hasConcept C37616216 @default.
- W3217382632 hasConcept C41008148 @default.
- W3217382632 hasConcept C45804977 @default.
- W3217382632 hasConcept C535046627 @default.
- W3217382632 hasConcept C58471807 @default.
- W3217382632 hasConcept C71924100 @default.
- W3217382632 hasConcept C72563966 @default.
- W3217382632 hasConceptScore W3217382632C112930515 @default.
- W3217382632 hasConceptScore W3217382632C11783203 @default.
- W3217382632 hasConceptScore W3217382632C119857082 @default.
- W3217382632 hasConceptScore W3217382632C126322002 @default.
- W3217382632 hasConceptScore W3217382632C136764020 @default.
- W3217382632 hasConceptScore W3217382632C143998085 @default.
- W3217382632 hasConceptScore W3217382632C177713679 @default.
- W3217382632 hasConceptScore W3217382632C203092338 @default.
- W3217382632 hasConceptScore W3217382632C2776694085 @default.
- W3217382632 hasConceptScore W3217382632C2777063308 @default.
- W3217382632 hasConceptScore W3217382632C2778850193 @default.
- W3217382632 hasConceptScore W3217382632C2779134260 @default.