Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217383418> ?p ?o ?g. }
- W3217383418 abstract "Background Intimate partner violence (IPV) is a preventable public health issue that affects millions of people worldwide. Approximately one in four women are estimated to be or have been victims of severe violence at some point in their lives, irrespective of their age, ethnicity, and economic status. Victims often report IPV experiences on social media, and automatic detection of such reports via machine learning may enable the proactive and targeted distribution of support and/or interventions for those in need. Methods We collected posts from Twitter using a list of keywords related to IPV. We manually reviewed subsets of retrieved posts, and prepared annotation guidelines to categorize tweets into IPV-report or non-IPV-report. We manually annotated a random subset of the collected tweets according to the guidelines, and used them to train and evaluate multiple supervised classification models. For the best classification strategy, we examined the model errors, bias, and trustworthiness through manual and automated content analysis. Results We annotated a total of 6,348 tweets, with inter-annotator agreement (IAA) of 0.86 (Cohen's kappa) among 1,834 double-annotated tweets. The dataset had substantial class imbalance, with only 668 (~11%) tweets representing IPV-reports. The RoBERTa model achieved the best classification performance (accuracy: 95%; IPV-report F1-score 0.76; non-IPV-report F1-score 0.97). Content analysis of the tweets revealed that the RoBERTa model sometimes misclassified as it focused on IPV-irrelevant words or symbols during decision making. Classification outcome and word importance analyses showed that our developed model is not biased toward gender or ethnicity while making classification decisions. Conclusion Our study developed an effective NLP model to identify IPV-reporting tweets automatically and in real time. The developed model can be an essential component for providing proactive social media based intervention and support for victims. It may also be used for population-level surveillance and conducting large-scale cohort studies." @default.
- W3217383418 created "2021-12-06" @default.
- W3217383418 creator A5001142907 @default.
- W3217383418 creator A5004858670 @default.
- W3217383418 creator A5010311977 @default.
- W3217383418 creator A5023584875 @default.
- W3217383418 creator A5055970007 @default.
- W3217383418 creator A5086087170 @default.
- W3217383418 creator A5090967945 @default.
- W3217383418 date "2021-11-26" @default.
- W3217383418 modified "2023-10-18" @default.
- W3217383418 title "Natural Language Model for Automatic Identification of Intimate Partner Violence Reports from Twitter" @default.
- W3217383418 cites W1444168786 @default.
- W3217383418 cites W1618905105 @default.
- W3217383418 cites W1930624869 @default.
- W3217383418 cites W1996422232 @default.
- W3217383418 cites W2037789405 @default.
- W3217383418 cites W2064675550 @default.
- W3217383418 cites W2068219797 @default.
- W3217383418 cites W2121875784 @default.
- W3217383418 cites W2125239224 @default.
- W3217383418 cites W2125283600 @default.
- W3217383418 cites W2126295594 @default.
- W3217383418 cites W2131774270 @default.
- W3217383418 cites W2141107009 @default.
- W3217383418 cites W2153635508 @default.
- W3217383418 cites W2250539671 @default.
- W3217383418 cites W2594633041 @default.
- W3217383418 cites W2615451132 @default.
- W3217383418 cites W2792198181 @default.
- W3217383418 cites W2888291160 @default.
- W3217383418 cites W2963341956 @default.
- W3217383418 cites W2963615251 @default.
- W3217383418 cites W2965373594 @default.
- W3217383418 cites W2968316645 @default.
- W3217383418 cites W3012703518 @default.
- W3217383418 cites W3020132519 @default.
- W3217383418 cites W3038130846 @default.
- W3217383418 cites W3046280637 @default.
- W3217383418 cites W3048439688 @default.
- W3217383418 cites W3083140371 @default.
- W3217383418 cites W3085380432 @default.
- W3217383418 cites W3091459940 @default.
- W3217383418 cites W3117705198 @default.
- W3217383418 cites W3122886537 @default.
- W3217383418 cites W3123287190 @default.
- W3217383418 cites W3134309290 @default.
- W3217383418 cites W3171010243 @default.
- W3217383418 cites W3211777799 @default.
- W3217383418 doi "https://doi.org/10.1101/2021.11.24.21266793" @default.
- W3217383418 hasPublicationYear "2021" @default.
- W3217383418 type Work @default.
- W3217383418 sameAs 3217383418 @default.
- W3217383418 citedByCount "0" @default.
- W3217383418 crossrefType "posted-content" @default.
- W3217383418 hasAuthorship W3217383418A5001142907 @default.
- W3217383418 hasAuthorship W3217383418A5004858670 @default.
- W3217383418 hasAuthorship W3217383418A5010311977 @default.
- W3217383418 hasAuthorship W3217383418A5023584875 @default.
- W3217383418 hasAuthorship W3217383418A5055970007 @default.
- W3217383418 hasAuthorship W3217383418A5086087170 @default.
- W3217383418 hasAuthorship W3217383418A5090967945 @default.
- W3217383418 hasBestOaLocation W32173834181 @default.
- W3217383418 hasConcept C116834253 @default.
- W3217383418 hasConcept C118552586 @default.
- W3217383418 hasConcept C119857082 @default.
- W3217383418 hasConcept C136764020 @default.
- W3217383418 hasConcept C154945302 @default.
- W3217383418 hasConcept C15744967 @default.
- W3217383418 hasConcept C166735990 @default.
- W3217383418 hasConcept C204321447 @default.
- W3217383418 hasConcept C27415008 @default.
- W3217383418 hasConcept C2776321320 @default.
- W3217383418 hasConcept C3017944768 @default.
- W3217383418 hasConcept C41008148 @default.
- W3217383418 hasConcept C518677369 @default.
- W3217383418 hasConcept C542059537 @default.
- W3217383418 hasConcept C545542383 @default.
- W3217383418 hasConcept C59822182 @default.
- W3217383418 hasConcept C71924100 @default.
- W3217383418 hasConcept C86803240 @default.
- W3217383418 hasConcept C94124525 @default.
- W3217383418 hasConceptScore W3217383418C116834253 @default.
- W3217383418 hasConceptScore W3217383418C118552586 @default.
- W3217383418 hasConceptScore W3217383418C119857082 @default.
- W3217383418 hasConceptScore W3217383418C136764020 @default.
- W3217383418 hasConceptScore W3217383418C154945302 @default.
- W3217383418 hasConceptScore W3217383418C15744967 @default.
- W3217383418 hasConceptScore W3217383418C166735990 @default.
- W3217383418 hasConceptScore W3217383418C204321447 @default.
- W3217383418 hasConceptScore W3217383418C27415008 @default.
- W3217383418 hasConceptScore W3217383418C2776321320 @default.
- W3217383418 hasConceptScore W3217383418C3017944768 @default.
- W3217383418 hasConceptScore W3217383418C41008148 @default.
- W3217383418 hasConceptScore W3217383418C518677369 @default.
- W3217383418 hasConceptScore W3217383418C542059537 @default.
- W3217383418 hasConceptScore W3217383418C545542383 @default.
- W3217383418 hasConceptScore W3217383418C59822182 @default.
- W3217383418 hasConceptScore W3217383418C71924100 @default.
- W3217383418 hasConceptScore W3217383418C86803240 @default.