Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217383746> ?p ?o ?g. }
- W3217383746 endingPage "243" @default.
- W3217383746 startingPage "243" @default.
- W3217383746 abstract "Convexity is crucial in obtaining many forms of inequalities. As a result, there is a significant link between convexity and integral inequality. Due to the significance of these concepts, the purpose of this study is to introduce a new class of generalized convex interval-valued functions called LR-preinvex interval-valued functions (LR-preinvex I-V-Fs) and to establish Hermite–Hadamard type inequalities for LR-preinvex I-V-Fs using partial order relation (≤p). Furthermore, we demonstrate that our results include a large class of new and known inequalities for LR-preinvex interval-valued functions and their variant forms as special instances. Further, we give useful examples that demonstrate usefulness of the theory produced in this study. These findings and diverse approaches may pave the way for future research in fuzzy optimization, modeling, and interval-valued functions." @default.
- W3217383746 created "2021-12-06" @default.
- W3217383746 creator A5026342382 @default.
- W3217383746 creator A5041634597 @default.
- W3217383746 creator A5043412155 @default.
- W3217383746 creator A5059465335 @default.
- W3217383746 creator A5066244781 @default.
- W3217383746 creator A5074873583 @default.
- W3217383746 date "2021-11-29" @default.
- W3217383746 modified "2023-10-16" @default.
- W3217383746 title "LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities" @default.
- W3217383746 cites W1965955764 @default.
- W3217383746 cites W1971591719 @default.
- W3217383746 cites W1972280390 @default.
- W3217383746 cites W1987832787 @default.
- W3217383746 cites W2009049317 @default.
- W3217383746 cites W2012192004 @default.
- W3217383746 cites W2021573471 @default.
- W3217383746 cites W2053149227 @default.
- W3217383746 cites W2072882480 @default.
- W3217383746 cites W2075223383 @default.
- W3217383746 cites W2136664951 @default.
- W3217383746 cites W2553487711 @default.
- W3217383746 cites W2556396095 @default.
- W3217383746 cites W2587428017 @default.
- W3217383746 cites W2749947267 @default.
- W3217383746 cites W2795730398 @default.
- W3217383746 cites W2900139894 @default.
- W3217383746 cites W2965312062 @default.
- W3217383746 cites W2982171697 @default.
- W3217383746 cites W3034362376 @default.
- W3217383746 cites W3042488718 @default.
- W3217383746 cites W3044969414 @default.
- W3217383746 cites W3093119204 @default.
- W3217383746 cites W3125195770 @default.
- W3217383746 cites W3133016158 @default.
- W3217383746 cites W3141308023 @default.
- W3217383746 cites W3155369488 @default.
- W3217383746 cites W3160011385 @default.
- W3217383746 cites W3164799850 @default.
- W3217383746 cites W3164938778 @default.
- W3217383746 cites W3166743327 @default.
- W3217383746 cites W3173350212 @default.
- W3217383746 cites W3175032701 @default.
- W3217383746 cites W3187280372 @default.
- W3217383746 cites W3207494788 @default.
- W3217383746 cites W3211827563 @default.
- W3217383746 cites W3212456975 @default.
- W3217383746 cites W4234969842 @default.
- W3217383746 cites W816848581 @default.
- W3217383746 doi "https://doi.org/10.3390/fractalfract5040243" @default.
- W3217383746 hasPublicationYear "2021" @default.
- W3217383746 type Work @default.
- W3217383746 sameAs 3217383746 @default.
- W3217383746 citedByCount "26" @default.
- W3217383746 countsByYear W32173837462021 @default.
- W3217383746 countsByYear W32173837462022 @default.
- W3217383746 countsByYear W32173837462023 @default.
- W3217383746 crossrefType "journal-article" @default.
- W3217383746 hasAuthorship W3217383746A5026342382 @default.
- W3217383746 hasAuthorship W3217383746A5041634597 @default.
- W3217383746 hasAuthorship W3217383746A5043412155 @default.
- W3217383746 hasAuthorship W3217383746A5059465335 @default.
- W3217383746 hasAuthorship W3217383746A5066244781 @default.
- W3217383746 hasAuthorship W3217383746A5074873583 @default.
- W3217383746 hasBestOaLocation W32173837461 @default.
- W3217383746 hasConcept C106159729 @default.
- W3217383746 hasConcept C112680207 @default.
- W3217383746 hasConcept C114614502 @default.
- W3217383746 hasConcept C134306372 @default.
- W3217383746 hasConcept C145446738 @default.
- W3217383746 hasConcept C154945302 @default.
- W3217383746 hasConcept C162324750 @default.
- W3217383746 hasConcept C18903297 @default.
- W3217383746 hasConcept C201362023 @default.
- W3217383746 hasConcept C202444582 @default.
- W3217383746 hasConcept C2524010 @default.
- W3217383746 hasConcept C2777212361 @default.
- W3217383746 hasConcept C2777299769 @default.
- W3217383746 hasConcept C2778067643 @default.
- W3217383746 hasConcept C28826006 @default.
- W3217383746 hasConcept C33923547 @default.
- W3217383746 hasConcept C41008148 @default.
- W3217383746 hasConcept C45555294 @default.
- W3217383746 hasConcept C60292330 @default.
- W3217383746 hasConcept C72134830 @default.
- W3217383746 hasConcept C86803240 @default.
- W3217383746 hasConceptScore W3217383746C106159729 @default.
- W3217383746 hasConceptScore W3217383746C112680207 @default.
- W3217383746 hasConceptScore W3217383746C114614502 @default.
- W3217383746 hasConceptScore W3217383746C134306372 @default.
- W3217383746 hasConceptScore W3217383746C145446738 @default.
- W3217383746 hasConceptScore W3217383746C154945302 @default.
- W3217383746 hasConceptScore W3217383746C162324750 @default.
- W3217383746 hasConceptScore W3217383746C18903297 @default.
- W3217383746 hasConceptScore W3217383746C201362023 @default.
- W3217383746 hasConceptScore W3217383746C202444582 @default.
- W3217383746 hasConceptScore W3217383746C2524010 @default.