Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217387579> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3217387579 abstract "Abstract BackgroundPrediction of mortality in intensive care units is very important. Thus, various mortality prediction models have been developed for this purpose. However, they do not accurately reflect the changing condition of the patient in real time. The aim of this study was to develop and evaluate a machine learning model that predicts short-term mortality in the intensive care unit using four easy-to-collect vital signs.MethodsTwo independent retrospective observational cohorts were included in this study. The primary training cohort included the data of 1968 patients admitted to the intensive care unit at the Veterans Health Service Medical Center, Seoul, South Korea, from January 2018 to March 2019. The external validation cohort comprised the records of 409 patients admitted to the medical intensive care unit at Seoul National University Hospital, Seoul, South Korea, from January 2019 to December 2019. Datasets of four vital signs (heart rate, systolic blood pressure, diastolic blood pressure, and peripheral capillary oxygen saturation [SpO2]) measured every hour for 10 h were used for the development of the machine learning model. The performances of mortality prediction models generated using five machine learning algorithms, Random Forest (RF), XGboost, perceptron, convolutional neural network, and Long Short-Term Memory, were calculated and compared using area under the receiver operating characteristic curve (AUROC) values and an external validation dataset.ResultsThe machine learning model generated using the RF algorithm showed the best performance. Its AUROC was 0.922, which is much better than the 0.8408 of the Acute Physiology and Chronic Health Evaluation II. Thus, to investigate the importance of variables that influence the performance of the machine learning model, machine learning models were generated for each observation time or vital sign using the RF algorithm. The machine learning model developed using SpO2 showed the best performance (AUROC, 0.89). ConclusionsThe mortality prediction model developed in this study using data from only four types of commonly recorded vital signs is simpler than any existing mortality prediction model. This simple yet powerful new mortality prediction model could be useful for early detection of probable mortality and appropriate medical intervention, especially in rapidly deteriorating patients." @default.
- W3217387579 created "2021-12-06" @default.
- W3217387579 creator A5001550074 @default.
- W3217387579 creator A5044677078 @default.
- W3217387579 creator A5064463072 @default.
- W3217387579 creator A5071718157 @default.
- W3217387579 creator A5078091681 @default.
- W3217387579 creator A5088762402 @default.
- W3217387579 creator A5089286262 @default.
- W3217387579 date "2021-11-18" @default.
- W3217387579 modified "2023-10-16" @default.
- W3217387579 title "Development of a Machine Learning Model for the Prediction of the Real Time Mortality in Patients in the Intensive Care Unit" @default.
- W3217387579 doi "https://doi.org/10.21203/rs.3.rs-1066192/v1" @default.
- W3217387579 hasPublicationYear "2021" @default.
- W3217387579 type Work @default.
- W3217387579 sameAs 3217387579 @default.
- W3217387579 citedByCount "0" @default.
- W3217387579 crossrefType "posted-content" @default.
- W3217387579 hasAuthorship W3217387579A5001550074 @default.
- W3217387579 hasAuthorship W3217387579A5044677078 @default.
- W3217387579 hasAuthorship W3217387579A5064463072 @default.
- W3217387579 hasAuthorship W3217387579A5071718157 @default.
- W3217387579 hasAuthorship W3217387579A5078091681 @default.
- W3217387579 hasAuthorship W3217387579A5088762402 @default.
- W3217387579 hasAuthorship W3217387579A5089286262 @default.
- W3217387579 hasBestOaLocation W32173875791 @default.
- W3217387579 hasConcept C119857082 @default.
- W3217387579 hasConcept C126322002 @default.
- W3217387579 hasConcept C141071460 @default.
- W3217387579 hasConcept C154945302 @default.
- W3217387579 hasConcept C167135981 @default.
- W3217387579 hasConcept C177713679 @default.
- W3217387579 hasConcept C179717631 @default.
- W3217387579 hasConcept C179755657 @default.
- W3217387579 hasConcept C194828623 @default.
- W3217387579 hasConcept C195910791 @default.
- W3217387579 hasConcept C2776376669 @default.
- W3217387579 hasConcept C2776890885 @default.
- W3217387579 hasConcept C2987404301 @default.
- W3217387579 hasConcept C41008148 @default.
- W3217387579 hasConcept C50644808 @default.
- W3217387579 hasConcept C58471807 @default.
- W3217387579 hasConcept C71924100 @default.
- W3217387579 hasConcept C72563966 @default.
- W3217387579 hasConcept C84393581 @default.
- W3217387579 hasConceptScore W3217387579C119857082 @default.
- W3217387579 hasConceptScore W3217387579C126322002 @default.
- W3217387579 hasConceptScore W3217387579C141071460 @default.
- W3217387579 hasConceptScore W3217387579C154945302 @default.
- W3217387579 hasConceptScore W3217387579C167135981 @default.
- W3217387579 hasConceptScore W3217387579C177713679 @default.
- W3217387579 hasConceptScore W3217387579C179717631 @default.
- W3217387579 hasConceptScore W3217387579C179755657 @default.
- W3217387579 hasConceptScore W3217387579C194828623 @default.
- W3217387579 hasConceptScore W3217387579C195910791 @default.
- W3217387579 hasConceptScore W3217387579C2776376669 @default.
- W3217387579 hasConceptScore W3217387579C2776890885 @default.
- W3217387579 hasConceptScore W3217387579C2987404301 @default.
- W3217387579 hasConceptScore W3217387579C41008148 @default.
- W3217387579 hasConceptScore W3217387579C50644808 @default.
- W3217387579 hasConceptScore W3217387579C58471807 @default.
- W3217387579 hasConceptScore W3217387579C71924100 @default.
- W3217387579 hasConceptScore W3217387579C72563966 @default.
- W3217387579 hasConceptScore W3217387579C84393581 @default.
- W3217387579 hasLocation W32173875791 @default.
- W3217387579 hasOpenAccess W3217387579 @default.
- W3217387579 hasPrimaryLocation W32173875791 @default.
- W3217387579 hasRelatedWork W1980932576 @default.
- W3217387579 hasRelatedWork W2000989443 @default.
- W3217387579 hasRelatedWork W2023015132 @default.
- W3217387579 hasRelatedWork W2051784511 @default.
- W3217387579 hasRelatedWork W2076293151 @default.
- W3217387579 hasRelatedWork W3148396094 @default.
- W3217387579 hasRelatedWork W3155720539 @default.
- W3217387579 hasRelatedWork W4205639172 @default.
- W3217387579 hasRelatedWork W4308768904 @default.
- W3217387579 hasRelatedWork W4365143256 @default.
- W3217387579 isParatext "false" @default.
- W3217387579 isRetracted "false" @default.
- W3217387579 magId "3217387579" @default.
- W3217387579 workType "article" @default.