Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217397344> ?p ?o ?g. }
- W3217397344 endingPage "3379" @default.
- W3217397344 startingPage "3379" @default.
- W3217397344 abstract "Drought modeling is essential in water resources planning and management in mitigating its effects, especially in arid regions. Climate change highly influences the frequency and intensity of droughts. In this study, new hybrid methods, the random vector functional link (RVFL) integrated with particle swarm optimization (PSO), the genetic algorithm (GA), the grey wolf optimization (GWO), the social spider optimization (SSO), the salp swarm algorithm (SSA) and the hunger games search algorithm (HGS) were used to forecast droughts based on the standard precipitation index (SPI). Monthly precipitation data from three stations in Bangladesh were used in the applications. The accuracy of the methods was compared by forecasting four SPI indices, SPI3, SPI6, SPI9, and SPI12, using the root mean square errors (RMSE), the mean absolute error (MAE), the Nash–Sutcliffe efficiency (NSE), and the determination coefficient (R2). The HGS algorithm provided a better performance than the alternative algorithms, and it considerably improved the accuracy of the RVFL method in drought forecasting; the improvement in RMSE for the SPI3, SP6, SPI9, and SPI12 was by 6.14%, 11.89%, 14.14%, 24.5% in station 1, by 6.02%, 17.42%, 13.49%, 24.86% in station 2 and by 7.55%, 26.45%, 15.27%, 13.21% in station 3, respectively. The outcomes of the study recommend the use of a HGS-based RVFL in drought modeling." @default.
- W3217397344 created "2021-12-06" @default.
- W3217397344 creator A5004596965 @default.
- W3217397344 creator A5013135415 @default.
- W3217397344 creator A5021159901 @default.
- W3217397344 creator A5022052919 @default.
- W3217397344 creator A5038855458 @default.
- W3217397344 creator A5075190563 @default.
- W3217397344 date "2021-12-01" @default.
- W3217397344 modified "2023-10-14" @default.
- W3217397344 title "Improving Drought Modeling Using Hybrid Random Vector Functional Link Methods" @default.
- W3217397344 cites W155205504 @default.
- W3217397344 cites W1907316133 @default.
- W3217397344 cites W1968075052 @default.
- W3217397344 cites W1972176362 @default.
- W3217397344 cites W1981074775 @default.
- W3217397344 cites W1985825558 @default.
- W3217397344 cites W1996640396 @default.
- W3217397344 cites W2000502470 @default.
- W3217397344 cites W2008885993 @default.
- W3217397344 cites W2013082086 @default.
- W3217397344 cites W2030811593 @default.
- W3217397344 cites W2038290288 @default.
- W3217397344 cites W2041490648 @default.
- W3217397344 cites W2054697288 @default.
- W3217397344 cites W2060621627 @default.
- W3217397344 cites W2061438946 @default.
- W3217397344 cites W2070620956 @default.
- W3217397344 cites W2077968790 @default.
- W3217397344 cites W2092770032 @default.
- W3217397344 cites W2094883484 @default.
- W3217397344 cites W2102441298 @default.
- W3217397344 cites W2133120170 @default.
- W3217397344 cites W2141984324 @default.
- W3217397344 cites W2153218922 @default.
- W3217397344 cites W2192927797 @default.
- W3217397344 cites W2536008880 @default.
- W3217397344 cites W2541618335 @default.
- W3217397344 cites W2562942616 @default.
- W3217397344 cites W2738900493 @default.
- W3217397344 cites W2763117712 @default.
- W3217397344 cites W2763277290 @default.
- W3217397344 cites W2784184607 @default.
- W3217397344 cites W2804523998 @default.
- W3217397344 cites W2889159308 @default.
- W3217397344 cites W2900838680 @default.
- W3217397344 cites W2909055043 @default.
- W3217397344 cites W2910507857 @default.
- W3217397344 cites W2920998881 @default.
- W3217397344 cites W2948700797 @default.
- W3217397344 cites W2949039742 @default.
- W3217397344 cites W2968534262 @default.
- W3217397344 cites W2978560988 @default.
- W3217397344 cites W3012299384 @default.
- W3217397344 cites W3017073826 @default.
- W3217397344 cites W3030428089 @default.
- W3217397344 cites W3034721876 @default.
- W3217397344 cites W3061960139 @default.
- W3217397344 cites W3090709955 @default.
- W3217397344 cites W3093750323 @default.
- W3217397344 cites W3097742487 @default.
- W3217397344 cites W3127987408 @default.
- W3217397344 cites W3134651880 @default.
- W3217397344 cites W3134957427 @default.
- W3217397344 cites W3152572002 @default.
- W3217397344 cites W3179249387 @default.
- W3217397344 cites W3184391253 @default.
- W3217397344 cites W3195523404 @default.
- W3217397344 cites W3197065975 @default.
- W3217397344 cites W4230953156 @default.
- W3217397344 doi "https://doi.org/10.3390/w13233379" @default.
- W3217397344 hasPublicationYear "2021" @default.
- W3217397344 type Work @default.
- W3217397344 sameAs 3217397344 @default.
- W3217397344 citedByCount "24" @default.
- W3217397344 countsByYear W32173973442022 @default.
- W3217397344 countsByYear W32173973442023 @default.
- W3217397344 crossrefType "journal-article" @default.
- W3217397344 hasAuthorship W3217397344A5004596965 @default.
- W3217397344 hasAuthorship W3217397344A5013135415 @default.
- W3217397344 hasAuthorship W3217397344A5021159901 @default.
- W3217397344 hasAuthorship W3217397344A5022052919 @default.
- W3217397344 hasAuthorship W3217397344A5038855458 @default.
- W3217397344 hasAuthorship W3217397344A5075190563 @default.
- W3217397344 hasBestOaLocation W32173973441 @default.
- W3217397344 hasConcept C105795698 @default.
- W3217397344 hasConcept C11413529 @default.
- W3217397344 hasConcept C126255220 @default.
- W3217397344 hasConcept C139945424 @default.
- W3217397344 hasConcept C33923547 @default.
- W3217397344 hasConcept C41008148 @default.
- W3217397344 hasConcept C85617194 @default.
- W3217397344 hasConceptScore W3217397344C105795698 @default.
- W3217397344 hasConceptScore W3217397344C11413529 @default.
- W3217397344 hasConceptScore W3217397344C126255220 @default.
- W3217397344 hasConceptScore W3217397344C139945424 @default.
- W3217397344 hasConceptScore W3217397344C33923547 @default.
- W3217397344 hasConceptScore W3217397344C41008148 @default.