Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217401178> ?p ?o ?g. }
- W3217401178 endingPage "320" @default.
- W3217401178 startingPage "298" @default.
- W3217401178 abstract "The Internet of Things (IoT) is becoming an indispensable part of everyday life, enabling a variety of emerging services and applications. However, the presence of rogue IoT devices has exposed the IoT to untold risks with severe consequences. The first step in securing the IoT is detecting rogue IoT devices and identifying legitimate ones. Conventional approaches use cryptographic mechanisms to authenticate and verify legitimate devices’ identities. However, cryptographic protocols are not available in many systems. Meanwhile, these methods are less effective when legitimate devices can be exploited or encryption keys are disclosed. Therefore, noncryptographic IoT-device identification and rogue device detection become efficient solutions to secure existing systems and will provide additional protection to systems with cryptographic protocols. Noncryptographic approaches require more effort and are not yet adequately investigated. In this article, we provide a comprehensive survey on machine learning technologies for the identification of IoT devices along with the detection of compromised or falsified ones from the viewpoint of passive surveillance agents or network operators. We classify the IoT-device identification and detection into four categories: 1) device-specific pattern recognition; 2) deep learning-enabled device identification; 3) unsupervised device identification; and 4) abnormal device detection. Meanwhile, we discuss various ML-related enabling technologies for this purpose. These enabling technologies include learning algorithms, feature engineering on network traffic traces and wireless signals, incremental learning, and abnormality detection." @default.
- W3217401178 created "2021-12-06" @default.
- W3217401178 creator A5028748926 @default.
- W3217401178 creator A5032764121 @default.
- W3217401178 creator A5047767249 @default.
- W3217401178 creator A5079301418 @default.
- W3217401178 creator A5081717248 @default.
- W3217401178 date "2022-01-01" @default.
- W3217401178 modified "2023-10-17" @default.
- W3217401178 title "Machine Learning for the Detection and Identification of Internet of Things Devices: A Survey" @default.
- W3217401178 cites W1548212946 @default.
- W3217401178 cites W1601124178 @default.
- W3217401178 cites W1614669719 @default.
- W3217401178 cites W1874399837 @default.
- W3217401178 cites W1917532482 @default.
- W3217401178 cites W1968817565 @default.
- W3217401178 cites W1970978220 @default.
- W3217401178 cites W1981025032 @default.
- W3217401178 cites W2000053617 @default.
- W3217401178 cites W2006424233 @default.
- W3217401178 cites W2007111180 @default.
- W3217401178 cites W2010481082 @default.
- W3217401178 cites W2014683958 @default.
- W3217401178 cites W2015469704 @default.
- W3217401178 cites W2018388266 @default.
- W3217401178 cites W2026859661 @default.
- W3217401178 cites W2038836370 @default.
- W3217401178 cites W2041184937 @default.
- W3217401178 cites W2043089557 @default.
- W3217401178 cites W2058363651 @default.
- W3217401178 cites W2076166888 @default.
- W3217401178 cites W2076835685 @default.
- W3217401178 cites W2079668303 @default.
- W3217401178 cites W2088455835 @default.
- W3217401178 cites W2089032497 @default.
- W3217401178 cites W2089695767 @default.
- W3217401178 cites W2090703577 @default.
- W3217401178 cites W2092431085 @default.
- W3217401178 cites W2100240506 @default.
- W3217401178 cites W2100989187 @default.
- W3217401178 cites W2106390255 @default.
- W3217401178 cites W2109631601 @default.
- W3217401178 cites W2111935653 @default.
- W3217401178 cites W2113678645 @default.
- W3217401178 cites W2118763921 @default.
- W3217401178 cites W2119880843 @default.
- W3217401178 cites W2124216931 @default.
- W3217401178 cites W2146250864 @default.
- W3217401178 cites W2153644609 @default.
- W3217401178 cites W2155886813 @default.
- W3217401178 cites W2160642098 @default.
- W3217401178 cites W2165698076 @default.
- W3217401178 cites W2168347867 @default.
- W3217401178 cites W2170895945 @default.
- W3217401178 cites W2171819552 @default.
- W3217401178 cites W2172292165 @default.
- W3217401178 cites W2183590093 @default.
- W3217401178 cites W2226542185 @default.
- W3217401178 cites W2250904038 @default.
- W3217401178 cites W2293066912 @default.
- W3217401178 cites W2294937515 @default.
- W3217401178 cites W2338892592 @default.
- W3217401178 cites W2402043120 @default.
- W3217401178 cites W2467825424 @default.
- W3217401178 cites W2485229854 @default.
- W3217401178 cites W2520888444 @default.
- W3217401178 cites W2531635091 @default.
- W3217401178 cites W2531829851 @default.
- W3217401178 cites W2554581053 @default.
- W3217401178 cites W2559414890 @default.
- W3217401178 cites W2559642831 @default.
- W3217401178 cites W2560647685 @default.
- W3217401178 cites W2565516711 @default.
- W3217401178 cites W2571254578 @default.
- W3217401178 cites W2587171108 @default.
- W3217401178 cites W2588053813 @default.
- W3217401178 cites W2595255002 @default.
- W3217401178 cites W2598905740 @default.
- W3217401178 cites W2606332932 @default.
- W3217401178 cites W2612398564 @default.
- W3217401178 cites W2616215575 @default.
- W3217401178 cites W2621148797 @default.
- W3217401178 cites W2625718276 @default.
- W3217401178 cites W2663191918 @default.
- W3217401178 cites W2732131698 @default.
- W3217401178 cites W2740924709 @default.
- W3217401178 cites W2742265268 @default.
- W3217401178 cites W2763836003 @default.
- W3217401178 cites W2765386572 @default.
- W3217401178 cites W2766295581 @default.
- W3217401178 cites W2766847974 @default.
- W3217401178 cites W2767109334 @default.
- W3217401178 cites W2767200452 @default.
- W3217401178 cites W2768718335 @default.
- W3217401178 cites W2782638440 @default.
- W3217401178 cites W2788388592 @default.
- W3217401178 cites W2790509442 @default.
- W3217401178 cites W2791256362 @default.