Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217410572> ?p ?o ?g. }
- W3217410572 endingPage "015020" @default.
- W3217410572 startingPage "015020" @default.
- W3217410572 abstract "Quantum machine learning (QML) is a rapidly growing area of research at the intersection of classical machine learning and quantum information theory. One area of considerable interest is the use of QML to learn information contained within quantum states themselves. In this work, we propose a novel approach in which the extraction of information from quantum states is undertaken in a classical representational-space, obtained through the training of a hybrid quantum autoencoder (HQA). Hence, given a set of pure states, this variational QML algorithm learns to identify, and classically represent, their essential distinguishing characteristics, subsequently giving rise to a new paradigm for clustering and semi-supervised classification. The analysis and employment of the HQA model are presented in the context of amplitude encoded states - which in principle can be extended to arbitrary states for the analysis of structure in non-trivial quantum data sets." @default.
- W3217410572 created "2021-12-06" @default.
- W3217410572 creator A5001284915 @default.
- W3217410572 creator A5031571726 @default.
- W3217410572 creator A5033199402 @default.
- W3217410572 date "2021-12-21" @default.
- W3217410572 modified "2023-09-27" @default.
- W3217410572 title "Clustering and enhanced classification using a hybrid quantum autoencoder" @default.
- W3217410572 cites W1529624360 @default.
- W3217410572 cites W1990514347 @default.
- W3217410572 cites W2009323003 @default.
- W3217410572 cites W2014704465 @default.
- W3217410572 cites W2140336578 @default.
- W3217410572 cites W2150593711 @default.
- W3217410572 cites W2161685427 @default.
- W3217410572 cites W2257937122 @default.
- W3217410572 cites W2559394418 @default.
- W3217410572 cites W2560386163 @default.
- W3217410572 cites W2606811521 @default.
- W3217410572 cites W2781738013 @default.
- W3217410572 cites W2786167326 @default.
- W3217410572 cites W2790388700 @default.
- W3217410572 cites W2794444783 @default.
- W3217410572 cites W2798434869 @default.
- W3217410572 cites W2903221501 @default.
- W3217410572 cites W2951663210 @default.
- W3217410572 cites W2952384119 @default.
- W3217410572 cites W2962976797 @default.
- W3217410572 cites W2972032089 @default.
- W3217410572 cites W2980889789 @default.
- W3217410572 cites W3004965358 @default.
- W3217410572 cites W3014376438 @default.
- W3217410572 cites W3014691782 @default.
- W3217410572 cites W3098191871 @default.
- W3217410572 cites W3100806676 @default.
- W3217410572 cites W3103870741 @default.
- W3217410572 cites W3104428150 @default.
- W3217410572 cites W3104962094 @default.
- W3217410572 cites W3105273233 @default.
- W3217410572 cites W3105640580 @default.
- W3217410572 cites W3105677655 @default.
- W3217410572 cites W3105870134 @default.
- W3217410572 cites W3105894126 @default.
- W3217410572 cites W3148001159 @default.
- W3217410572 cites W3158295928 @default.
- W3217410572 cites W4239028530 @default.
- W3217410572 cites W4239510810 @default.
- W3217410572 doi "https://doi.org/10.1088/2058-9565/ac3c53" @default.
- W3217410572 hasPublicationYear "2021" @default.
- W3217410572 type Work @default.
- W3217410572 sameAs 3217410572 @default.
- W3217410572 citedByCount "2" @default.
- W3217410572 countsByYear W32174105722022 @default.
- W3217410572 countsByYear W32174105722023 @default.
- W3217410572 crossrefType "journal-article" @default.
- W3217410572 hasAuthorship W3217410572A5001284915 @default.
- W3217410572 hasAuthorship W3217410572A5031571726 @default.
- W3217410572 hasAuthorship W3217410572A5033199402 @default.
- W3217410572 hasBestOaLocation W32174105721 @default.
- W3217410572 hasConcept C101738243 @default.
- W3217410572 hasConcept C108583219 @default.
- W3217410572 hasConcept C11413529 @default.
- W3217410572 hasConcept C121332964 @default.
- W3217410572 hasConcept C127413603 @default.
- W3217410572 hasConcept C137019171 @default.
- W3217410572 hasConcept C146978453 @default.
- W3217410572 hasConcept C151730666 @default.
- W3217410572 hasConcept C153180895 @default.
- W3217410572 hasConcept C154945302 @default.
- W3217410572 hasConcept C15706264 @default.
- W3217410572 hasConcept C169699857 @default.
- W3217410572 hasConcept C177264268 @default.
- W3217410572 hasConcept C199360897 @default.
- W3217410572 hasConcept C2779094486 @default.
- W3217410572 hasConcept C2779343474 @default.
- W3217410572 hasConcept C33923547 @default.
- W3217410572 hasConcept C41008148 @default.
- W3217410572 hasConcept C62520636 @default.
- W3217410572 hasConcept C64543145 @default.
- W3217410572 hasConcept C73555534 @default.
- W3217410572 hasConcept C80444323 @default.
- W3217410572 hasConcept C84114770 @default.
- W3217410572 hasConcept C86803240 @default.
- W3217410572 hasConceptScore W3217410572C101738243 @default.
- W3217410572 hasConceptScore W3217410572C108583219 @default.
- W3217410572 hasConceptScore W3217410572C11413529 @default.
- W3217410572 hasConceptScore W3217410572C121332964 @default.
- W3217410572 hasConceptScore W3217410572C127413603 @default.
- W3217410572 hasConceptScore W3217410572C137019171 @default.
- W3217410572 hasConceptScore W3217410572C146978453 @default.
- W3217410572 hasConceptScore W3217410572C151730666 @default.
- W3217410572 hasConceptScore W3217410572C153180895 @default.
- W3217410572 hasConceptScore W3217410572C154945302 @default.
- W3217410572 hasConceptScore W3217410572C15706264 @default.
- W3217410572 hasConceptScore W3217410572C169699857 @default.
- W3217410572 hasConceptScore W3217410572C177264268 @default.
- W3217410572 hasConceptScore W3217410572C199360897 @default.
- W3217410572 hasConceptScore W3217410572C2779094486 @default.