Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217436260> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3217436260 abstract "Numerous problems in machine learning require some type of dimensionality reduction. Unsupervised metric learning deals with the definition of intrinsic and adaptive distance functions of a dataset. Locally linear embedding (LLE) consists of a widely used manifold learning algorithm that applies dimensionality reduction to find a more compact and meaningful representation of the observed data through the capture of the local geometry of the patches. In order to overcome relevant limitations of the LLE approach, we introduce the LLE Kullback-Leibler (LLE-KL) method. Our objective with such a methodological modification is to increase the robustness of the LLE to the presence of noise or outliers in the data. The proposed method employs the KL divergence between patches of the KNN graph instead of the pointwise Euclidean metric. Our empirical results using several real-world datasets indicate that the proposed method delivers a superior clustering allocation compared to state-of-the-art methods of dimensionality reduction-based metric learning." @default.
- W3217436260 created "2021-12-06" @default.
- W3217436260 creator A5029414311 @default.
- W3217436260 creator A5044596103 @default.
- W3217436260 date "2021-01-01" @default.
- W3217436260 modified "2023-09-24" @default.
- W3217436260 title "A Kullback-Leibler Divergence-Based Locally Linear Embedding Method: A Novel Parametric Approach for Cluster Analysis" @default.
- W3217436260 cites W1965555277 @default.
- W3217436260 cites W1987971958 @default.
- W3217436260 cites W2001141328 @default.
- W3217436260 cites W2053186076 @default.
- W3217436260 cites W2077776048 @default.
- W3217436260 cites W2129111551 @default.
- W3217436260 cites W2156838815 @default.
- W3217436260 cites W2407230345 @default.
- W3217436260 cites W2499292135 @default.
- W3217436260 cites W25943284 @default.
- W3217436260 cites W2922158313 @default.
- W3217436260 cites W3024483685 @default.
- W3217436260 cites W4241727697 @default.
- W3217436260 doi "https://doi.org/10.1007/978-3-030-91702-9_27" @default.
- W3217436260 hasPublicationYear "2021" @default.
- W3217436260 type Work @default.
- W3217436260 sameAs 3217436260 @default.
- W3217436260 citedByCount "0" @default.
- W3217436260 crossrefType "book-chapter" @default.
- W3217436260 hasAuthorship W3217436260A5029414311 @default.
- W3217436260 hasAuthorship W3217436260A5044596103 @default.
- W3217436260 hasConcept C104317684 @default.
- W3217436260 hasConcept C134306372 @default.
- W3217436260 hasConcept C151876577 @default.
- W3217436260 hasConcept C153180895 @default.
- W3217436260 hasConcept C154945302 @default.
- W3217436260 hasConcept C171752962 @default.
- W3217436260 hasConcept C185592680 @default.
- W3217436260 hasConcept C2777984123 @default.
- W3217436260 hasConcept C2778626561 @default.
- W3217436260 hasConcept C33923547 @default.
- W3217436260 hasConcept C41008148 @default.
- W3217436260 hasConcept C41608201 @default.
- W3217436260 hasConcept C55493867 @default.
- W3217436260 hasConcept C63479239 @default.
- W3217436260 hasConcept C70518039 @default.
- W3217436260 hasConcept C73555534 @default.
- W3217436260 hasConcept C79337645 @default.
- W3217436260 hasConceptScore W3217436260C104317684 @default.
- W3217436260 hasConceptScore W3217436260C134306372 @default.
- W3217436260 hasConceptScore W3217436260C151876577 @default.
- W3217436260 hasConceptScore W3217436260C153180895 @default.
- W3217436260 hasConceptScore W3217436260C154945302 @default.
- W3217436260 hasConceptScore W3217436260C171752962 @default.
- W3217436260 hasConceptScore W3217436260C185592680 @default.
- W3217436260 hasConceptScore W3217436260C2777984123 @default.
- W3217436260 hasConceptScore W3217436260C2778626561 @default.
- W3217436260 hasConceptScore W3217436260C33923547 @default.
- W3217436260 hasConceptScore W3217436260C41008148 @default.
- W3217436260 hasConceptScore W3217436260C41608201 @default.
- W3217436260 hasConceptScore W3217436260C55493867 @default.
- W3217436260 hasConceptScore W3217436260C63479239 @default.
- W3217436260 hasConceptScore W3217436260C70518039 @default.
- W3217436260 hasConceptScore W3217436260C73555534 @default.
- W3217436260 hasConceptScore W3217436260C79337645 @default.
- W3217436260 hasLocation W32174362601 @default.
- W3217436260 hasOpenAccess W3217436260 @default.
- W3217436260 hasPrimaryLocation W32174362601 @default.
- W3217436260 hasRelatedWork W11345794 @default.
- W3217436260 hasRelatedWork W11591864 @default.
- W3217436260 hasRelatedWork W12102633 @default.
- W3217436260 hasRelatedWork W14572582 @default.
- W3217436260 hasRelatedWork W1666861 @default.
- W3217436260 hasRelatedWork W272511 @default.
- W3217436260 hasRelatedWork W6602908 @default.
- W3217436260 hasRelatedWork W747274 @default.
- W3217436260 hasRelatedWork W845024 @default.
- W3217436260 hasRelatedWork W8582482 @default.
- W3217436260 isParatext "false" @default.
- W3217436260 isRetracted "false" @default.
- W3217436260 magId "3217436260" @default.
- W3217436260 workType "book-chapter" @default.