Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217447788> ?p ?o ?g. }
- W3217447788 endingPage "195" @default.
- W3217447788 startingPage "178" @default.
- W3217447788 abstract "The effects of drought can manifest in vegetation across an array of physiological responses and time scales. In metropolitan areas, vegetation provides shading and cooling during hot and dry conditions, but these benefits can be reduced with drought. While many studies have evaluated interannual vegetation drought responses, these responses to drought can be expressed diversely across seasons, especially in cities that regularly experience seasonal drought (e.g., in Mediterranean climates). Here, we evaluated seasonal and interannual drought responses across the dominant types of urban trees and grasses in the Santa Barbara, California, USA metropolitan area, primarily using Landsat imagery acquired from 2010 to 2019 as well as repeat Airborne Visible Infrared Imaging Spectrometer - Classic (AVIRIS-C) imagery acquired 2013–2015. To track vegetation types, we produced a random forest classification from 4 m AVIRIS-Next Generation (AVIRIS-NG) imagery acquired in June 2014 (overall accuracy = 86%; kappa = 0.85), thresholding to >90% pure pixels for most vegetation types in the coarser time series imagery. We monitored drought response from Landsat imagery using the Normalized Difference Vegetation Index (NDVI) and the difference in land surface temperature (ΔLST) between vegetation and developed/impervious surfaces. We used AVIRIS-C to measure equivalent water thickness (EWT), comparing it with NDVI. During drought years, NDVI was lower and ΔLST was closer to zero. Changes in EWT revealed seasonal adjustments by vegetation that were not readily apparent in the NDVI. To show how drought response expression in vegetation can vary by season, drought duration, and urban vegetation type, we examined the correlations of both NDVI and ΔLST to the Standardized Precipitation Evapotranspiration Index (SPEI) calculated over a range of time spans. For most vegetation types, the strongest correlations of NDVI to SPEI and ΔLST to SPEI were during the summer, except for annual grass and turfgrass NDVI, which had the strongest correlations in the winter. In general, NDVI and ΔLST for annual grass were most often correlated with SPEI at spans <12 months, particularly for NDVI. By contrast, NDVI and ΔLST for trees and turfgrass were commonly also correlated with SPEI at spans ≥12 months, in addition to seasonal time spans of <12 months. This study demonstrates the benefits of using functionally and seasonally distinctive remote sensing variables (NDVI, ΔLST, and EWT) together to quantify changes in vegetation canopy condition during droughts." @default.
- W3217447788 created "2021-12-06" @default.
- W3217447788 creator A5015255358 @default.
- W3217447788 creator A5018065949 @default.
- W3217447788 creator A5024850720 @default.
- W3217447788 creator A5034025984 @default.
- W3217447788 creator A5063640667 @default.
- W3217447788 creator A5070114340 @default.
- W3217447788 creator A5080984382 @default.
- W3217447788 date "2022-01-01" @default.
- W3217447788 modified "2023-09-27" @default.
- W3217447788 title "Seasonal and interannual drought responses of vegetation in a California urbanized area measured using complementary remote sensing indices" @default.
- W3217447788 cites W1006483632 @default.
- W3217447788 cites W1829952814 @default.
- W3217447788 cites W1964340517 @default.
- W3217447788 cites W1964379489 @default.
- W3217447788 cites W1967768518 @default.
- W3217447788 cites W1967839820 @default.
- W3217447788 cites W1970369781 @default.
- W3217447788 cites W1974870460 @default.
- W3217447788 cites W1981939599 @default.
- W3217447788 cites W1983192691 @default.
- W3217447788 cites W1984811700 @default.
- W3217447788 cites W1988906717 @default.
- W3217447788 cites W1994604181 @default.
- W3217447788 cites W2000359198 @default.
- W3217447788 cites W2001636726 @default.
- W3217447788 cites W2001777508 @default.
- W3217447788 cites W2005311268 @default.
- W3217447788 cites W2009202065 @default.
- W3217447788 cites W2019038438 @default.
- W3217447788 cites W2022470997 @default.
- W3217447788 cites W2038215949 @default.
- W3217447788 cites W2040556259 @default.
- W3217447788 cites W2062765422 @default.
- W3217447788 cites W2063396028 @default.
- W3217447788 cites W2069267948 @default.
- W3217447788 cites W2076540201 @default.
- W3217447788 cites W2077968790 @default.
- W3217447788 cites W2078045149 @default.
- W3217447788 cites W2096682311 @default.
- W3217447788 cites W2101419161 @default.
- W3217447788 cites W2108045836 @default.
- W3217447788 cites W2111380393 @default.
- W3217447788 cites W2112732795 @default.
- W3217447788 cites W2122172506 @default.
- W3217447788 cites W2123505986 @default.
- W3217447788 cites W2125865984 @default.
- W3217447788 cites W2128063994 @default.
- W3217447788 cites W2128809393 @default.
- W3217447788 cites W2131732563 @default.
- W3217447788 cites W2133272607 @default.
- W3217447788 cites W2140774872 @default.
- W3217447788 cites W2146951816 @default.
- W3217447788 cites W2148470195 @default.
- W3217447788 cites W2149185296 @default.
- W3217447788 cites W2153763028 @default.
- W3217447788 cites W2153958436 @default.
- W3217447788 cites W2159411209 @default.
- W3217447788 cites W2162377765 @default.
- W3217447788 cites W2163097026 @default.
- W3217447788 cites W2164615997 @default.
- W3217447788 cites W2164680012 @default.
- W3217447788 cites W2170327428 @default.
- W3217447788 cites W2171757568 @default.
- W3217447788 cites W2172275561 @default.
- W3217447788 cites W2214925434 @default.
- W3217447788 cites W2234018419 @default.
- W3217447788 cites W2261059368 @default.
- W3217447788 cites W2336442849 @default.
- W3217447788 cites W2338397189 @default.
- W3217447788 cites W2474983499 @default.
- W3217447788 cites W2587515503 @default.
- W3217447788 cites W2618333673 @default.
- W3217447788 cites W2619053326 @default.
- W3217447788 cites W2623853452 @default.
- W3217447788 cites W2736567757 @default.
- W3217447788 cites W2739229087 @default.
- W3217447788 cites W2761741417 @default.
- W3217447788 cites W2762239979 @default.
- W3217447788 cites W2767817236 @default.
- W3217447788 cites W2769501458 @default.
- W3217447788 cites W2788971853 @default.
- W3217447788 cites W2794323886 @default.
- W3217447788 cites W2800989100 @default.
- W3217447788 cites W2804583155 @default.
- W3217447788 cites W2807195964 @default.
- W3217447788 cites W2884419653 @default.
- W3217447788 cites W2887848592 @default.
- W3217447788 cites W2888492598 @default.
- W3217447788 cites W2892858462 @default.
- W3217447788 cites W2911964244 @default.
- W3217447788 cites W2915408703 @default.
- W3217447788 cites W2920690360 @default.
- W3217447788 cites W2921860422 @default.
- W3217447788 cites W2923210967 @default.
- W3217447788 cites W2951000100 @default.
- W3217447788 cites W2952896271 @default.