Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217458307> ?p ?o ?g. }
- W3217458307 endingPage "333" @default.
- W3217458307 startingPage "333" @default.
- W3217458307 abstract "Arsenic, a potent carcinogen and neurotoxin, affects over 200 million people globally. Current detection methods are laborious, expensive, and unscalable, being difficult to implement in developing regions and during crises such as COVID-19. This study attempts to determine if a relationship exists between soil’s hyperspectral data and arsenic concentration using NASA’s Hyperion satellite. It is the first arsenic study to use satellite-based hyperspectral data and apply a classification approach. Four regression machine learning models are tested to determine this correlation in soil with bare land cover. Raw data are converted to reflectance, problematic atmospheric influences are removed, characteristic wavelengths are selected, and four noise reduction algorithms are tested. The combination of data augmentation, Genetic Algorithm, Second Derivative Transformation, and Random Forest regression (R2=0.840 and normalized root mean squared error (re-scaled to [0,1]) = 0.122) shows strong correlation, performing better than past models despite using noisier satellite data (versus lab-processed samples). Three binary classification machine learning models are then applied to identify high-risk shrub-covered regions in ten U.S. states, achieving strong accuracy (=0.693) and F1-score (=0.728). Overall, these results suggest that such a methodology is practical and can provide a sustainable alternative to arsenic contamination detection." @default.
- W3217458307 created "2021-12-06" @default.
- W3217458307 creator A5007048407 @default.
- W3217458307 creator A5088109190 @default.
- W3217458307 date "2021-12-03" @default.
- W3217458307 modified "2023-09-27" @default.
- W3217458307 title "Detecting Arsenic Contamination Using Satellite Imagery and Machine Learning" @default.
- W3217458307 cites W1498436455 @default.
- W3217458307 cites W1898040677 @default.
- W3217458307 cites W1919327972 @default.
- W3217458307 cites W1955830638 @default.
- W3217458307 cites W1965735351 @default.
- W3217458307 cites W1987760411 @default.
- W3217458307 cites W1999048942 @default.
- W3217458307 cites W2001569762 @default.
- W3217458307 cites W2013525093 @default.
- W3217458307 cites W2014603249 @default.
- W3217458307 cites W2028786034 @default.
- W3217458307 cites W2038513356 @default.
- W3217458307 cites W2041948279 @default.
- W3217458307 cites W2058275227 @default.
- W3217458307 cites W2063907334 @default.
- W3217458307 cites W2072045226 @default.
- W3217458307 cites W2074391498 @default.
- W3217458307 cites W2103224119 @default.
- W3217458307 cites W2109606373 @default.
- W3217458307 cites W2116805268 @default.
- W3217458307 cites W2116825089 @default.
- W3217458307 cites W2118486652 @default.
- W3217458307 cites W2145624073 @default.
- W3217458307 cites W2153319633 @default.
- W3217458307 cites W2167255285 @default.
- W3217458307 cites W2167799103 @default.
- W3217458307 cites W2170466545 @default.
- W3217458307 cites W2261059368 @default.
- W3217458307 cites W2273708466 @default.
- W3217458307 cites W2287416146 @default.
- W3217458307 cites W2293027586 @default.
- W3217458307 cites W2558714883 @default.
- W3217458307 cites W2560192201 @default.
- W3217458307 cites W2609788321 @default.
- W3217458307 cites W2624751846 @default.
- W3217458307 cites W2782072844 @default.
- W3217458307 cites W2804146571 @default.
- W3217458307 cites W2883827111 @default.
- W3217458307 cites W2889517076 @default.
- W3217458307 cites W2890296937 @default.
- W3217458307 cites W2891044964 @default.
- W3217458307 cites W2892356560 @default.
- W3217458307 cites W2893324711 @default.
- W3217458307 cites W2904796016 @default.
- W3217458307 cites W2908994269 @default.
- W3217458307 cites W2945020384 @default.
- W3217458307 cites W2946066539 @default.
- W3217458307 cites W2951969386 @default.
- W3217458307 cites W2955229389 @default.
- W3217458307 cites W3005899814 @default.
- W3217458307 cites W3017896060 @default.
- W3217458307 cites W3018126589 @default.
- W3217458307 cites W3028066085 @default.
- W3217458307 cites W3045190073 @default.
- W3217458307 cites W3048173274 @default.
- W3217458307 cites W3093016721 @default.
- W3217458307 cites W3094704314 @default.
- W3217458307 cites W3105640742 @default.
- W3217458307 cites W3150919074 @default.
- W3217458307 doi "https://doi.org/10.3390/toxics9120333" @default.
- W3217458307 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34941767" @default.
- W3217458307 hasPublicationYear "2021" @default.
- W3217458307 type Work @default.
- W3217458307 sameAs 3217458307 @default.
- W3217458307 citedByCount "4" @default.
- W3217458307 countsByYear W32174583072022 @default.
- W3217458307 countsByYear W32174583072023 @default.
- W3217458307 crossrefType "journal-article" @default.
- W3217458307 hasAuthorship W3217458307A5007048407 @default.
- W3217458307 hasAuthorship W3217458307A5088109190 @default.
- W3217458307 hasBestOaLocation W32174583071 @default.
- W3217458307 hasConcept C105795698 @default.
- W3217458307 hasConcept C112570922 @default.
- W3217458307 hasConcept C127313418 @default.
- W3217458307 hasConcept C127413603 @default.
- W3217458307 hasConcept C139945424 @default.
- W3217458307 hasConcept C146978453 @default.
- W3217458307 hasConcept C154945302 @default.
- W3217458307 hasConcept C159078339 @default.
- W3217458307 hasConcept C169258074 @default.
- W3217458307 hasConcept C178790620 @default.
- W3217458307 hasConcept C185592680 @default.
- W3217458307 hasConcept C18903297 @default.
- W3217458307 hasConcept C19269812 @default.
- W3217458307 hasConcept C2778102629 @default.
- W3217458307 hasConcept C33923547 @default.
- W3217458307 hasConcept C39432304 @default.
- W3217458307 hasConcept C41008148 @default.
- W3217458307 hasConcept C502230775 @default.
- W3217458307 hasConcept C62649853 @default.
- W3217458307 hasConcept C86803240 @default.