Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217494015> ?p ?o ?g. }
- W3217494015 endingPage "608" @default.
- W3217494015 startingPage "600" @default.
- W3217494015 abstract "Tacrolimus (TAC), a first-line immunosuppressant in solid-organ transplant, has a narrow therapeutic window and large inter-individual variability, which affects its use in clinical practice. Successful predictions using machine learning algorithms have been reported in several fields. However, a comparison of 10 machine learning model-based TAC pharmacogenetic and pharmacokinetic dosing algorithms for kidney transplant perioperative patients of Chinese descent has not been reported. The objective of this study was to screen and establish an appropriate machine learning method to predict the individualized dosages of TAC for perioperative kidney transplant patients.The records of 2551 patients were collected from three transplant centres, 80% of which were randomly selected as a 'derivation cohort' to develop the dose prediction algorithm, while the remaining 20% constituted a 'validation cohort' to validate the final algorithm selected. Important features were screened according to our previously established population pharmacokinetic model of tacrolimus. The performances of the algorithms were evaluated and compared using R-squared and the mean percentage in the remaining 20% of patients.This study identified several factors influencing TAC dosage, including CYP3A5 rs776746, CYP3A4 rs4646437, haematocrit, Wuzhi capsules, TAC daily dose, age, height, weight, post-operative time, nifedipine and the medication history of the patient. According to our results, among the 10 machine learning models, the extra trees regressor (ETR) algorithm showed the best performance in the training set (R-squared: 1, mean percentage within 20%: 100%) and test set (R-squared: 0.85, mean percentage within 20%: 92.77%) of the derivation cohort. The ETR model successfully predicted the ideal TAC dosage in 97.73% of patients, especially in the intermediate dosage range (>5 mg/day to <8 mg/day), whereby the ideal TAC dosage could be successfully predicted in 99% of the patients.The results indicated that the ETR algorithm, which was chosen to establish the dose prediction model, performed better than the other nine machine learning models. This study is the first to establish ETR algorithms to predict TAC dosage. This study will further promote the individualized medication of TAC in kidney transplant patients in the future, which has great significance in ensuring the safety and effectiveness of drug use." @default.
- W3217494015 created "2021-12-06" @default.
- W3217494015 creator A5002287044 @default.
- W3217494015 creator A5006533490 @default.
- W3217494015 creator A5009924587 @default.
- W3217494015 creator A5015367672 @default.
- W3217494015 creator A5018851420 @default.
- W3217494015 creator A5028121388 @default.
- W3217494015 creator A5029023295 @default.
- W3217494015 creator A5035847198 @default.
- W3217494015 creator A5048894785 @default.
- W3217494015 creator A5057287134 @default.
- W3217494015 creator A5061036744 @default.
- W3217494015 creator A5063697349 @default.
- W3217494015 creator A5074051355 @default.
- W3217494015 date "2021-11-21" @default.
- W3217494015 modified "2023-10-16" @default.
- W3217494015 title "Machine learning‐based method for tacrolimus dose predictions in Chinese kidney transplant perioperative patients" @default.
- W3217494015 cites W1480151031 @default.
- W3217494015 cites W1515782956 @default.
- W3217494015 cites W1920947146 @default.
- W3217494015 cites W1964908406 @default.
- W3217494015 cites W1967521828 @default.
- W3217494015 cites W1971890669 @default.
- W3217494015 cites W1978362461 @default.
- W3217494015 cites W1991267023 @default.
- W3217494015 cites W1992188999 @default.
- W3217494015 cites W2014452295 @default.
- W3217494015 cites W2026011628 @default.
- W3217494015 cites W2033833126 @default.
- W3217494015 cites W2037253825 @default.
- W3217494015 cites W2041808051 @default.
- W3217494015 cites W2045121044 @default.
- W3217494015 cites W2045922658 @default.
- W3217494015 cites W2046912033 @default.
- W3217494015 cites W2068356343 @default.
- W3217494015 cites W2081858766 @default.
- W3217494015 cites W2093663919 @default.
- W3217494015 cites W2101785863 @default.
- W3217494015 cites W2166801934 @default.
- W3217494015 cites W2203261309 @default.
- W3217494015 cites W2210812892 @default.
- W3217494015 cites W2587106090 @default.
- W3217494015 cites W2795471351 @default.
- W3217494015 cites W2802875031 @default.
- W3217494015 cites W2805050638 @default.
- W3217494015 cites W2884800345 @default.
- W3217494015 cites W2903849335 @default.
- W3217494015 cites W2912581524 @default.
- W3217494015 cites W2942673049 @default.
- W3217494015 cites W2983159287 @default.
- W3217494015 cites W3029981351 @default.
- W3217494015 cites W3136901597 @default.
- W3217494015 doi "https://doi.org/10.1111/jcpt.13579" @default.
- W3217494015 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34802160" @default.
- W3217494015 hasPublicationYear "2021" @default.
- W3217494015 type Work @default.
- W3217494015 sameAs 3217494015 @default.
- W3217494015 citedByCount "6" @default.
- W3217494015 countsByYear W32174940152022 @default.
- W3217494015 countsByYear W32174940152023 @default.
- W3217494015 crossrefType "journal-article" @default.
- W3217494015 hasAuthorship W3217494015A5002287044 @default.
- W3217494015 hasAuthorship W3217494015A5006533490 @default.
- W3217494015 hasAuthorship W3217494015A5009924587 @default.
- W3217494015 hasAuthorship W3217494015A5015367672 @default.
- W3217494015 hasAuthorship W3217494015A5018851420 @default.
- W3217494015 hasAuthorship W3217494015A5028121388 @default.
- W3217494015 hasAuthorship W3217494015A5029023295 @default.
- W3217494015 hasAuthorship W3217494015A5035847198 @default.
- W3217494015 hasAuthorship W3217494015A5048894785 @default.
- W3217494015 hasAuthorship W3217494015A5057287134 @default.
- W3217494015 hasAuthorship W3217494015A5061036744 @default.
- W3217494015 hasAuthorship W3217494015A5063697349 @default.
- W3217494015 hasAuthorship W3217494015A5074051355 @default.
- W3217494015 hasBestOaLocation W32174940151 @default.
- W3217494015 hasConcept C104317684 @default.
- W3217494015 hasConcept C11413529 @default.
- W3217494015 hasConcept C119857082 @default.
- W3217494015 hasConcept C126322002 @default.
- W3217494015 hasConcept C135763542 @default.
- W3217494015 hasConcept C141071460 @default.
- W3217494015 hasConcept C185592680 @default.
- W3217494015 hasConcept C2777288759 @default.
- W3217494015 hasConcept C2780303639 @default.
- W3217494015 hasConcept C2909675724 @default.
- W3217494015 hasConcept C2911091166 @default.
- W3217494015 hasConcept C2994498544 @default.
- W3217494015 hasConcept C31174226 @default.
- W3217494015 hasConcept C33923547 @default.
- W3217494015 hasConcept C41008148 @default.
- W3217494015 hasConcept C55493867 @default.
- W3217494015 hasConcept C71924100 @default.
- W3217494015 hasConcept C72563966 @default.
- W3217494015 hasConcept C92137452 @default.
- W3217494015 hasConceptScore W3217494015C104317684 @default.
- W3217494015 hasConceptScore W3217494015C11413529 @default.
- W3217494015 hasConceptScore W3217494015C119857082 @default.