Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217508114> ?p ?o ?g. }
- W3217508114 endingPage "151805" @default.
- W3217508114 startingPage "151805" @default.
- W3217508114 abstract "Increasing concentrations of potentially toxic elements (PTE) in agricultural soils remain a major source of public concern. Monitoring PTEs in an agricultural field with no history of contaminants necessitate adequate analysis utilizing a robust model to accurately uncover hidden PTEs. Detecting and mapping the distribution of soil properties using portable X-ray fluorescence (pXRF) and proximal sensing techniques is not only rapid, but also relatively inexpensive. In this study, an ensemble model, consisting of partial least square regression (PLSR), support vector machine (SVM), random forest (RF) and cubist, was used for the prediction and mapping of soil As content in an agricultural field with no history of pollution. The datasets were collected using pXRF and field spectroscopy techniques. The main goal was to compare the ensemble model to each of the calibration techniques in terms of prediction accuracy of As content in such a field. Other components [e.g., soil organic carbon (SOC), Mn, S, soil pH, Fe] that are known to influence As levels in the soil were also retrieved to assess their correlation with soil As. The models were evaluated using the root mean squared error (RMSECV), the coefficient of determination (R2CV) and the ratio of performance to interquartile range (RPIQ). In terms of prediction accuracy, the ensemble model outperformed each of the individual techniques (R2CV = 0.80/0.75) and obtained the least error margin (RMSECV = 1.91/2.16). Overall, all the predictive techniques were able to detect both low and high estimated values of soil As within the study field, but with the ensemble model resembling the measurements better. The ensemble model, a promising tool as demonstrated by the current study, is highly recommended to be included in future studies for more accurate estimation of As and other PTEs in other agricultural fields." @default.
- W3217508114 created "2021-12-06" @default.
- W3217508114 creator A5034478685 @default.
- W3217508114 creator A5048563984 @default.
- W3217508114 creator A5050200917 @default.
- W3217508114 creator A5087138964 @default.
- W3217508114 creator A5091682536 @default.
- W3217508114 date "2022-04-01" @default.
- W3217508114 modified "2023-09-23" @default.
- W3217508114 title "Using an ensemble model coupled with portable X-ray fluorescence and visible near-infrared spectroscopy to explore the viability of mapping and estimating arsenic in an agricultural soil" @default.
- W3217508114 cites W1117706312 @default.
- W3217508114 cites W1557855016 @default.
- W3217508114 cites W1975390183 @default.
- W3217508114 cites W1987760411 @default.
- W3217508114 cites W1990791131 @default.
- W3217508114 cites W1991426997 @default.
- W3217508114 cites W1999569083 @default.
- W3217508114 cites W2001569762 @default.
- W3217508114 cites W2002231918 @default.
- W3217508114 cites W2002253165 @default.
- W3217508114 cites W2003017390 @default.
- W3217508114 cites W2005460036 @default.
- W3217508114 cites W2007873570 @default.
- W3217508114 cites W2009647096 @default.
- W3217508114 cites W2009810657 @default.
- W3217508114 cites W2009910940 @default.
- W3217508114 cites W2014684789 @default.
- W3217508114 cites W2025063525 @default.
- W3217508114 cites W2025165202 @default.
- W3217508114 cites W2044734598 @default.
- W3217508114 cites W2050021494 @default.
- W3217508114 cites W2050043534 @default.
- W3217508114 cites W2050776357 @default.
- W3217508114 cites W2051703974 @default.
- W3217508114 cites W2053085157 @default.
- W3217508114 cites W2057100017 @default.
- W3217508114 cites W2058096965 @default.
- W3217508114 cites W2058791926 @default.
- W3217508114 cites W2063199403 @default.
- W3217508114 cites W2070467687 @default.
- W3217508114 cites W2093449654 @default.
- W3217508114 cites W2140959043 @default.
- W3217508114 cites W2153328324 @default.
- W3217508114 cites W2165895388 @default.
- W3217508114 cites W2216636650 @default.
- W3217508114 cites W2292439029 @default.
- W3217508114 cites W2298139521 @default.
- W3217508114 cites W2339216980 @default.
- W3217508114 cites W2520502883 @default.
- W3217508114 cites W2527641356 @default.
- W3217508114 cites W2556587018 @default.
- W3217508114 cites W2598505938 @default.
- W3217508114 cites W2606716674 @default.
- W3217508114 cites W2725541299 @default.
- W3217508114 cites W2736723798 @default.
- W3217508114 cites W2758105342 @default.
- W3217508114 cites W2773213923 @default.
- W3217508114 cites W2790446870 @default.
- W3217508114 cites W2790913225 @default.
- W3217508114 cites W2893324711 @default.
- W3217508114 cites W2906461154 @default.
- W3217508114 cites W2917111047 @default.
- W3217508114 cites W2921124223 @default.
- W3217508114 cites W2922697223 @default.
- W3217508114 cites W2973105400 @default.
- W3217508114 cites W2983344730 @default.
- W3217508114 cites W2985740154 @default.
- W3217508114 cites W2994893592 @default.
- W3217508114 cites W2995418327 @default.
- W3217508114 cites W3016449127 @default.
- W3217508114 cites W3083277533 @default.
- W3217508114 cites W3088545093 @default.
- W3217508114 cites W3092669929 @default.
- W3217508114 cites W3096190728 @default.
- W3217508114 cites W3103589903 @default.
- W3217508114 cites W3125840244 @default.
- W3217508114 cites W3133977987 @default.
- W3217508114 cites W3164359699 @default.
- W3217508114 cites W3164572878 @default.
- W3217508114 cites W4249972823 @default.
- W3217508114 doi "https://doi.org/10.1016/j.scitotenv.2021.151805" @default.
- W3217508114 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34813815" @default.
- W3217508114 hasPublicationYear "2022" @default.
- W3217508114 type Work @default.
- W3217508114 sameAs 3217508114 @default.
- W3217508114 citedByCount "5" @default.
- W3217508114 countsByYear W32175081142022 @default.
- W3217508114 countsByYear W32175081142023 @default.
- W3217508114 crossrefType "journal-article" @default.
- W3217508114 hasAuthorship W3217508114A5034478685 @default.
- W3217508114 hasAuthorship W3217508114A5048563984 @default.
- W3217508114 hasAuthorship W3217508114A5050200917 @default.
- W3217508114 hasAuthorship W3217508114A5087138964 @default.
- W3217508114 hasAuthorship W3217508114A5091682536 @default.
- W3217508114 hasConcept C105795698 @default.
- W3217508114 hasConcept C119857082 @default.
- W3217508114 hasConcept C12267149 @default.
- W3217508114 hasConcept C128990827 @default.