Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217552542> ?p ?o ?g. }
- W3217552542 endingPage "153412" @default.
- W3217552542 startingPage "153412" @default.
- W3217552542 abstract "Grain boundary (GB) plays a crucial role in the mechanical properties and irradiation resistance of nuclear materials. It is thus essential to understand and predict the defect properties near GBs. Here, we present a framework for predicting vacancy formation energy (EVf) near GBs in tungsten (W) by machine learning (ML) technique. The EVf values of 4496 atomic sites near 46 types of [001] symmetry tilt GB (STGB) in W are calculated as database and eight appropriate variables are selected to characterizing the surrounding atomic configuration and location of atomic sites. Via the support vector machine with the radial basis kernel function (RBF-SVM), the good predicted results of cross validation (CV) and generalized verification prove the suitability and effectiveness of the selected variables and RBF-SVM method. Beside, due to their big differences in dislocation arrangement and atomic configuration, the STGBs need to be divided into three types, high angle, low angle-I and low angle-II STGBs, for adopting the Separate CV, and their predicted accuracies were found to have big improvements. Because the present method adopts geometrical factors, such as spatial size characteristic, density and location, as descriptors for the ML analysis, it is robust and general to other materials such as α-Fe, and beneficial to predict and understand the vacancy formation near interfaces." @default.
- W3217552542 created "2021-12-06" @default.
- W3217552542 creator A5006527950 @default.
- W3217552542 creator A5010700443 @default.
- W3217552542 creator A5011004311 @default.
- W3217552542 creator A5018753324 @default.
- W3217552542 creator A5022526821 @default.
- W3217552542 creator A5035742417 @default.
- W3217552542 creator A5039760971 @default.
- W3217552542 creator A5043641715 @default.
- W3217552542 creator A5053725005 @default.
- W3217552542 date "2022-02-01" @default.
- W3217552542 modified "2023-10-18" @default.
- W3217552542 title "Prediction of vacancy formation energies at tungsten grain boundaries from local structure via machine learning method" @default.
- W3217552542 cites W1485452597 @default.
- W3217552542 cites W179276586 @default.
- W3217552542 cites W1969104398 @default.
- W3217552542 cites W1973205381 @default.
- W3217552542 cites W1980516791 @default.
- W3217552542 cites W1980571120 @default.
- W3217552542 cites W1980881833 @default.
- W3217552542 cites W2007178835 @default.
- W3217552542 cites W2008307240 @default.
- W3217552542 cites W2008700662 @default.
- W3217552542 cites W2010992943 @default.
- W3217552542 cites W2023198231 @default.
- W3217552542 cites W2028124264 @default.
- W3217552542 cites W2034907959 @default.
- W3217552542 cites W2035330311 @default.
- W3217552542 cites W2038958116 @default.
- W3217552542 cites W2040028885 @default.
- W3217552542 cites W2040162537 @default.
- W3217552542 cites W2055806022 @default.
- W3217552542 cites W2057558756 @default.
- W3217552542 cites W2059745365 @default.
- W3217552542 cites W2065944699 @default.
- W3217552542 cites W2068151579 @default.
- W3217552542 cites W2070179470 @default.
- W3217552542 cites W2071056362 @default.
- W3217552542 cites W2075406992 @default.
- W3217552542 cites W2081976840 @default.
- W3217552542 cites W2085935636 @default.
- W3217552542 cites W2086385914 @default.
- W3217552542 cites W2088311068 @default.
- W3217552542 cites W2091202444 @default.
- W3217552542 cites W2109793622 @default.
- W3217552542 cites W2110723014 @default.
- W3217552542 cites W2113145149 @default.
- W3217552542 cites W2114258860 @default.
- W3217552542 cites W2123141886 @default.
- W3217552542 cites W2145992718 @default.
- W3217552542 cites W2153635508 @default.
- W3217552542 cites W2167080551 @default.
- W3217552542 cites W2316564661 @default.
- W3217552542 cites W2326245644 @default.
- W3217552542 cites W2519666857 @default.
- W3217552542 cites W2550668110 @default.
- W3217552542 cites W2553315665 @default.
- W3217552542 cites W2741557496 @default.
- W3217552542 cites W2742835787 @default.
- W3217552542 cites W2782077407 @default.
- W3217552542 cites W2789955962 @default.
- W3217552542 cites W2790298419 @default.
- W3217552542 cites W2944090857 @default.
- W3217552542 cites W2950369352 @default.
- W3217552542 cites W3016621522 @default.
- W3217552542 cites W4239510810 @default.
- W3217552542 doi "https://doi.org/10.1016/j.jnucmat.2021.153412" @default.
- W3217552542 hasPublicationYear "2022" @default.
- W3217552542 type Work @default.
- W3217552542 sameAs 3217552542 @default.
- W3217552542 citedByCount "5" @default.
- W3217552542 countsByYear W32175525422022 @default.
- W3217552542 countsByYear W32175525422023 @default.
- W3217552542 crossrefType "journal-article" @default.
- W3217552542 hasAuthorship W3217552542A5006527950 @default.
- W3217552542 hasAuthorship W3217552542A5010700443 @default.
- W3217552542 hasAuthorship W3217552542A5011004311 @default.
- W3217552542 hasAuthorship W3217552542A5018753324 @default.
- W3217552542 hasAuthorship W3217552542A5022526821 @default.
- W3217552542 hasAuthorship W3217552542A5035742417 @default.
- W3217552542 hasAuthorship W3217552542A5039760971 @default.
- W3217552542 hasAuthorship W3217552542A5043641715 @default.
- W3217552542 hasAuthorship W3217552542A5053725005 @default.
- W3217552542 hasConcept C11413529 @default.
- W3217552542 hasConcept C114221277 @default.
- W3217552542 hasConcept C114614502 @default.
- W3217552542 hasConcept C12267149 @default.
- W3217552542 hasConcept C147597530 @default.
- W3217552542 hasConcept C152365726 @default.
- W3217552542 hasConcept C154945302 @default.
- W3217552542 hasConcept C159122135 @default.
- W3217552542 hasConcept C185592680 @default.
- W3217552542 hasConcept C191897082 @default.
- W3217552542 hasConcept C192562407 @default.
- W3217552542 hasConcept C22693506 @default.
- W3217552542 hasConcept C33923547 @default.
- W3217552542 hasConcept C41008148 @default.