Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217557310> ?p ?o ?g. }
- W3217557310 abstract "Because radiotherapy is indispensible for treating cervical cancer, it is critical to accurately and efficiently delineate the radiation targets. We evaluated a deep learning (DL)-based auto-segmentation algorithm for automatic contouring of clinical target volumes (CTVs) in cervical cancers.Computed tomography (CT) datasets from 535 cervical cancers treated with definitive or postoperative radiotherapy were collected. A DL tool based on VB-Net was developed to delineate CTVs of the pelvic lymph drainage area (dCTV1) and parametrial area (dCTV2) in the definitive radiotherapy group. The training/validation/test number is 157/20/23. CTV of the pelvic lymph drainage area (pCTV1) was delineated in the postoperative radiotherapy group. The training/validation/test number is 272/30/33. Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) were used to evaluate the contouring accuracy. Contouring times were recorded for efficiency comparison.The mean DSC, MSD, and HD values for our DL-based tool were 0.88/1.32 mm/21.60 mm for dCTV1, 0.70/2.42 mm/22.44 mm for dCTV2, and 0.86/1.15 mm/20.78 mm for pCTV1. Only minor modifications were needed for 63.5% of auto-segmentations to meet the clinical requirements. The contouring accuracy of the DL-based tool was comparable to that of senior radiation oncologists and was superior to that of junior/intermediate radiation oncologists. Additionally, DL assistance improved the performance of junior radiation oncologists for dCTV2 and pCTV1 contouring (mean DSC increases: 0.20 for dCTV2, 0.03 for pCTV1; mean contouring time decrease: 9.8 min for dCTV2, 28.9 min for pCTV1).DL-based auto-segmentation improves CTV contouring accuracy, reduces contouring time, and improves clinical efficiency for treating cervical cancer." @default.
- W3217557310 created "2021-12-06" @default.
- W3217557310 creator A5005782060 @default.
- W3217557310 creator A5016202924 @default.
- W3217557310 creator A5020653840 @default.
- W3217557310 creator A5022467592 @default.
- W3217557310 creator A5072271439 @default.
- W3217557310 creator A5075338951 @default.
- W3217557310 creator A5075745850 @default.
- W3217557310 creator A5089404427 @default.
- W3217557310 creator A5089938291 @default.
- W3217557310 date "2021-11-22" @default.
- W3217557310 modified "2023-10-07" @default.
- W3217557310 title "Deep learning‐based auto‐segmentation of clinical target volumes for radiotherapy treatment of cervical cancer" @default.
- W3217557310 cites W1497937796 @default.
- W3217557310 cites W1868754180 @default.
- W3217557310 cites W1986209497 @default.
- W3217557310 cites W2010751529 @default.
- W3217557310 cites W2023660535 @default.
- W3217557310 cites W2025240023 @default.
- W3217557310 cites W2028129509 @default.
- W3217557310 cites W2036334364 @default.
- W3217557310 cites W2041958560 @default.
- W3217557310 cites W2066945972 @default.
- W3217557310 cites W2137347661 @default.
- W3217557310 cites W2155173511 @default.
- W3217557310 cites W2160754664 @default.
- W3217557310 cites W2272984102 @default.
- W3217557310 cites W2557145437 @default.
- W3217557310 cites W2726102591 @default.
- W3217557310 cites W2777439179 @default.
- W3217557310 cites W2806837609 @default.
- W3217557310 cites W2889646458 @default.
- W3217557310 cites W2909503380 @default.
- W3217557310 cites W2925142108 @default.
- W3217557310 cites W2941434555 @default.
- W3217557310 cites W2962914239 @default.
- W3217557310 cites W2986021933 @default.
- W3217557310 cites W2990354819 @default.
- W3217557310 cites W3027961002 @default.
- W3217557310 cites W3092032247 @default.
- W3217557310 cites W3217557310 @default.
- W3217557310 cites W4211132630 @default.
- W3217557310 doi "https://doi.org/10.1002/acm2.13470" @default.
- W3217557310 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34807501" @default.
- W3217557310 hasPublicationYear "2021" @default.
- W3217557310 type Work @default.
- W3217557310 sameAs 3217557310 @default.
- W3217557310 citedByCount "17" @default.
- W3217557310 countsByYear W32175573102021 @default.
- W3217557310 countsByYear W32175573102022 @default.
- W3217557310 countsByYear W32175573102023 @default.
- W3217557310 crossrefType "journal-article" @default.
- W3217557310 hasAuthorship W3217557310A5005782060 @default.
- W3217557310 hasAuthorship W3217557310A5016202924 @default.
- W3217557310 hasAuthorship W3217557310A5020653840 @default.
- W3217557310 hasAuthorship W3217557310A5022467592 @default.
- W3217557310 hasAuthorship W3217557310A5072271439 @default.
- W3217557310 hasAuthorship W3217557310A5075338951 @default.
- W3217557310 hasAuthorship W3217557310A5075745850 @default.
- W3217557310 hasAuthorship W3217557310A5089404427 @default.
- W3217557310 hasAuthorship W3217557310A5089938291 @default.
- W3217557310 hasBestOaLocation W32175573101 @default.
- W3217557310 hasConcept C121608353 @default.
- W3217557310 hasConcept C121684516 @default.
- W3217557310 hasConcept C126322002 @default.
- W3217557310 hasConcept C126838900 @default.
- W3217557310 hasConcept C2778220009 @default.
- W3217557310 hasConcept C2779104521 @default.
- W3217557310 hasConcept C2780920918 @default.
- W3217557310 hasConcept C2989005 @default.
- W3217557310 hasConcept C41008148 @default.
- W3217557310 hasConcept C509974204 @default.
- W3217557310 hasConcept C71924100 @default.
- W3217557310 hasConceptScore W3217557310C121608353 @default.
- W3217557310 hasConceptScore W3217557310C121684516 @default.
- W3217557310 hasConceptScore W3217557310C126322002 @default.
- W3217557310 hasConceptScore W3217557310C126838900 @default.
- W3217557310 hasConceptScore W3217557310C2778220009 @default.
- W3217557310 hasConceptScore W3217557310C2779104521 @default.
- W3217557310 hasConceptScore W3217557310C2780920918 @default.
- W3217557310 hasConceptScore W3217557310C2989005 @default.
- W3217557310 hasConceptScore W3217557310C41008148 @default.
- W3217557310 hasConceptScore W3217557310C509974204 @default.
- W3217557310 hasConceptScore W3217557310C71924100 @default.
- W3217557310 hasFunder F4320321001 @default.
- W3217557310 hasIssue "2" @default.
- W3217557310 hasLocation W32175573101 @default.
- W3217557310 hasLocation W32175573102 @default.
- W3217557310 hasLocation W32175573103 @default.
- W3217557310 hasOpenAccess W3217557310 @default.
- W3217557310 hasPrimaryLocation W32175573101 @default.
- W3217557310 hasRelatedWork W1548510492 @default.
- W3217557310 hasRelatedWork W2006014249 @default.
- W3217557310 hasRelatedWork W2033501351 @default.
- W3217557310 hasRelatedWork W2157740221 @default.
- W3217557310 hasRelatedWork W2537862542 @default.
- W3217557310 hasRelatedWork W2642912725 @default.
- W3217557310 hasRelatedWork W2885048735 @default.
- W3217557310 hasRelatedWork W4247881089 @default.