Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217615881> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3217615881 endingPage "10957" @default.
- W3217615881 startingPage "10957" @default.
- W3217615881 abstract "Time series classification (TSC) task is one of the most significant topics in data mining. Among all methods for this issue, the deep-learning-based shows superior performance for its good adaption to raw series data and automatic extraction of features. However, rare eyes are kept on composing ensembles of these superior individual classifiers to achieve further breakthroughs. The existing deep learning ensembles NNE did a heavy work of combining 60 individuals but did not maximize the deserving improvement, since it merely pays attention to the diversity of individuals but ignores their accuracy. In this paper, we propose to construct an ensemble of Full Convolutional Neural Networks (FCN) by Random Subspace Method (RSM), named RSM-FCN. FCN is a simple but outstanding individual classifier and RSM is suitable for high dimensional data such as time series, but there are few instances. Thus, the combination of these strengths, RSM-FCN provides a highly cost-effective approach to yield promising results. Experiments on the UCR dataset demonstrate the effectiveness and reasonability of the proposed method." @default.
- W3217615881 created "2021-12-06" @default.
- W3217615881 creator A5009407457 @default.
- W3217615881 creator A5056902506 @default.
- W3217615881 creator A5072930914 @default.
- W3217615881 creator A5089449262 @default.
- W3217615881 date "2021-11-19" @default.
- W3217615881 modified "2023-09-26" @default.
- W3217615881 title "Random Subspace Ensembles of Fully Convolutional Network for Time Series Classification" @default.
- W3217615881 cites W1984058506 @default.
- W3217615881 cites W1984674851 @default.
- W3217615881 cites W2011208599 @default.
- W3217615881 cites W2029438113 @default.
- W3217615881 cites W2050493487 @default.
- W3217615881 cites W2070808135 @default.
- W3217615881 cites W2099302229 @default.
- W3217615881 cites W2113242816 @default.
- W3217615881 cites W2157797292 @default.
- W3217615881 cites W2440222035 @default.
- W3217615881 cites W2510434276 @default.
- W3217615881 cites W2551393996 @default.
- W3217615881 cites W2555077524 @default.
- W3217615881 cites W2598525681 @default.
- W3217615881 cites W2754051771 @default.
- W3217615881 cites W2892035503 @default.
- W3217615881 cites W2898843852 @default.
- W3217615881 cites W2914768946 @default.
- W3217615881 cites W2964049638 @default.
- W3217615881 cites W2981492545 @default.
- W3217615881 cites W2988244882 @default.
- W3217615881 cites W2989945813 @default.
- W3217615881 doi "https://doi.org/10.3390/app112210957" @default.
- W3217615881 hasPublicationYear "2021" @default.
- W3217615881 type Work @default.
- W3217615881 sameAs 3217615881 @default.
- W3217615881 citedByCount "1" @default.
- W3217615881 countsByYear W32176158812022 @default.
- W3217615881 crossrefType "journal-article" @default.
- W3217615881 hasAuthorship W3217615881A5009407457 @default.
- W3217615881 hasAuthorship W3217615881A5056902506 @default.
- W3217615881 hasAuthorship W3217615881A5072930914 @default.
- W3217615881 hasAuthorship W3217615881A5089449262 @default.
- W3217615881 hasBestOaLocation W32176158811 @default.
- W3217615881 hasConcept C106135958 @default.
- W3217615881 hasConcept C119857082 @default.
- W3217615881 hasConcept C124101348 @default.
- W3217615881 hasConcept C132964779 @default.
- W3217615881 hasConcept C143724316 @default.
- W3217615881 hasConcept C151730666 @default.
- W3217615881 hasConcept C153180895 @default.
- W3217615881 hasConcept C154945302 @default.
- W3217615881 hasConcept C199360897 @default.
- W3217615881 hasConcept C2780801425 @default.
- W3217615881 hasConcept C32834561 @default.
- W3217615881 hasConcept C41008148 @default.
- W3217615881 hasConcept C81363708 @default.
- W3217615881 hasConcept C86803240 @default.
- W3217615881 hasConcept C95623464 @default.
- W3217615881 hasConceptScore W3217615881C106135958 @default.
- W3217615881 hasConceptScore W3217615881C119857082 @default.
- W3217615881 hasConceptScore W3217615881C124101348 @default.
- W3217615881 hasConceptScore W3217615881C132964779 @default.
- W3217615881 hasConceptScore W3217615881C143724316 @default.
- W3217615881 hasConceptScore W3217615881C151730666 @default.
- W3217615881 hasConceptScore W3217615881C153180895 @default.
- W3217615881 hasConceptScore W3217615881C154945302 @default.
- W3217615881 hasConceptScore W3217615881C199360897 @default.
- W3217615881 hasConceptScore W3217615881C2780801425 @default.
- W3217615881 hasConceptScore W3217615881C32834561 @default.
- W3217615881 hasConceptScore W3217615881C41008148 @default.
- W3217615881 hasConceptScore W3217615881C81363708 @default.
- W3217615881 hasConceptScore W3217615881C86803240 @default.
- W3217615881 hasConceptScore W3217615881C95623464 @default.
- W3217615881 hasIssue "22" @default.
- W3217615881 hasLocation W32176158811 @default.
- W3217615881 hasLocation W32176158812 @default.
- W3217615881 hasOpenAccess W3217615881 @default.
- W3217615881 hasPrimaryLocation W32176158811 @default.
- W3217615881 hasRelatedWork W1986402779 @default.
- W3217615881 hasRelatedWork W2016349419 @default.
- W3217615881 hasRelatedWork W2149078746 @default.
- W3217615881 hasRelatedWork W2155749504 @default.
- W3217615881 hasRelatedWork W2324062652 @default.
- W3217615881 hasRelatedWork W2543161807 @default.
- W3217615881 hasRelatedWork W2964383635 @default.
- W3217615881 hasRelatedWork W2995914718 @default.
- W3217615881 hasRelatedWork W4200345300 @default.
- W3217615881 hasRelatedWork W564581980 @default.
- W3217615881 hasVolume "11" @default.
- W3217615881 isParatext "false" @default.
- W3217615881 isRetracted "false" @default.
- W3217615881 magId "3217615881" @default.
- W3217615881 workType "article" @default.