Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217623665> ?p ?o ?g. }
- W3217623665 endingPage "104988" @default.
- W3217623665 startingPage "104988" @default.
- W3217623665 abstract "Various studies have shown that image correlation calculated in the space domain outperforms frequency-based methods. However, such an approach usually requires great computational efforts, making it challenging to adopt for surveying fast moving processes like glaciers, particularly over wide areas. We present a local adaptive multiscale image matching algorithm (LAMMA), which repeatedly applies image correlation on grids of increasing spatial resolution and adapts the size of the interrogation area according to the local range of displacements. LAMMA allows reducing the number of calculi of several orders of magnitude and limits the occurrence of displacement outliers. We show an example of LAMMA application on Sentinel-2 images to measure glaciers flow of the Southern Patagonian Icefield, where LAMMA's runtime was comparable to that of frequency-based correlation. LAMMA's Matlab code is freely available on GitHub." @default.
- W3217623665 created "2021-12-06" @default.
- W3217623665 creator A5022266717 @default.
- W3217623665 creator A5071188889 @default.
- W3217623665 creator A5082195980 @default.
- W3217623665 creator A5082809651 @default.
- W3217623665 date "2022-02-01" @default.
- W3217623665 modified "2023-10-09" @default.
- W3217623665 title "Fast local adaptive multiscale image matching algorithm for remote sensing image correlation" @default.
- W3217623665 cites W141049894 @default.
- W3217623665 cites W1533955188 @default.
- W3217623665 cites W1762798876 @default.
- W3217623665 cites W1963623641 @default.
- W3217623665 cites W1977691959 @default.
- W3217623665 cites W1984381674 @default.
- W3217623665 cites W1988043901 @default.
- W3217623665 cites W2005206013 @default.
- W3217623665 cites W2005671348 @default.
- W3217623665 cites W2006907724 @default.
- W3217623665 cites W2025162356 @default.
- W3217623665 cites W2025418414 @default.
- W3217623665 cites W2026262541 @default.
- W3217623665 cites W2032098896 @default.
- W3217623665 cites W2038184434 @default.
- W3217623665 cites W2044494416 @default.
- W3217623665 cites W2053385068 @default.
- W3217623665 cites W2060697300 @default.
- W3217623665 cites W2063180739 @default.
- W3217623665 cites W2074192519 @default.
- W3217623665 cites W2092369902 @default.
- W3217623665 cites W2112480589 @default.
- W3217623665 cites W2123896593 @default.
- W3217623665 cites W2133723677 @default.
- W3217623665 cites W2138221697 @default.
- W3217623665 cites W2139926998 @default.
- W3217623665 cites W2140643177 @default.
- W3217623665 cites W2148047490 @default.
- W3217623665 cites W2152990774 @default.
- W3217623665 cites W2161283226 @default.
- W3217623665 cites W2166020037 @default.
- W3217623665 cites W2170185675 @default.
- W3217623665 cites W2171717821 @default.
- W3217623665 cites W2470414079 @default.
- W3217623665 cites W2519584342 @default.
- W3217623665 cites W2539122367 @default.
- W3217623665 cites W2619879495 @default.
- W3217623665 cites W2765688938 @default.
- W3217623665 cites W2805919786 @default.
- W3217623665 cites W2811289326 @default.
- W3217623665 cites W2950293106 @default.
- W3217623665 cites W2980721263 @default.
- W3217623665 cites W2999856346 @default.
- W3217623665 cites W3012181217 @default.
- W3217623665 cites W3095945825 @default.
- W3217623665 cites W3121068881 @default.
- W3217623665 cites W3123612503 @default.
- W3217623665 cites W3135985200 @default.
- W3217623665 cites W3169463365 @default.
- W3217623665 doi "https://doi.org/10.1016/j.cageo.2021.104988" @default.
- W3217623665 hasPublicationYear "2022" @default.
- W3217623665 type Work @default.
- W3217623665 sameAs 3217623665 @default.
- W3217623665 citedByCount "2" @default.
- W3217623665 countsByYear W32176236652022 @default.
- W3217623665 countsByYear W32176236652023 @default.
- W3217623665 crossrefType "journal-article" @default.
- W3217623665 hasAuthorship W3217623665A5022266717 @default.
- W3217623665 hasAuthorship W3217623665A5071188889 @default.
- W3217623665 hasAuthorship W3217623665A5082195980 @default.
- W3217623665 hasAuthorship W3217623665A5082809651 @default.
- W3217623665 hasConcept C105795698 @default.
- W3217623665 hasConcept C107551265 @default.
- W3217623665 hasConcept C11413529 @default.
- W3217623665 hasConcept C115635565 @default.
- W3217623665 hasConcept C115961682 @default.
- W3217623665 hasConcept C120665830 @default.
- W3217623665 hasConcept C121332964 @default.
- W3217623665 hasConcept C127313418 @default.
- W3217623665 hasConcept C150060386 @default.
- W3217623665 hasConcept C154945302 @default.
- W3217623665 hasConcept C15744967 @default.
- W3217623665 hasConcept C159985019 @default.
- W3217623665 hasConcept C165064840 @default.
- W3217623665 hasConcept C192562407 @default.
- W3217623665 hasConcept C204323151 @default.
- W3217623665 hasConcept C31972630 @default.
- W3217623665 hasConcept C33923547 @default.
- W3217623665 hasConcept C41008148 @default.
- W3217623665 hasConcept C542102704 @default.
- W3217623665 hasConcept C62649853 @default.
- W3217623665 hasConcept C76155785 @default.
- W3217623665 hasConcept C79337645 @default.
- W3217623665 hasConceptScore W3217623665C105795698 @default.
- W3217623665 hasConceptScore W3217623665C107551265 @default.
- W3217623665 hasConceptScore W3217623665C11413529 @default.
- W3217623665 hasConceptScore W3217623665C115635565 @default.
- W3217623665 hasConceptScore W3217623665C115961682 @default.
- W3217623665 hasConceptScore W3217623665C120665830 @default.