Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217641891> ?p ?o ?g. }
- W3217641891 endingPage "107347" @default.
- W3217641891 startingPage "107347" @default.
- W3217641891 abstract "Conventional methods for generating Gaussian random surfaces, including the moving average (MA) time series model with nonlinear conjugate gradient method (NCGM), two-dimensional (2-D) digital filter method, and spectral representation method (SRM), are implemented with a wide range of autocorrelation length and truncation length values of the autocorrelation function (ACF). The ACF, power spectral density function (PSDF), and essential roughness parameters of the simulated surfaces are calculated and compared. Based on the simulation results, the mechanism of the truncation length of ACF affecting the simulated surfaces can be summarized as that the step formed by truncating ACF is not sufficiently small, thus resulting in non-negligible errors in the corresponding PSDF. Such errors will be propagated to the simulated surfaces. A conservative criterion is proposed to avoid the adverse effects of truncating ACF: make the autocorrelation length less than 8% of the surface dimensions and the truncation length at least seven times autocorrelation length. The results show that the MA model with NCGM overestimates the PSDF values of simulated surfaces in the high-frequency region, meaning significant high-frequency noise in the simulated surfaces. The 2-D digital filter method and the SRM have almost the same performance, and both methods are better than the MA model with NCGM when the criterion of truncating ACF is fulfilled. The SRM generates rough surfaces with the smallest standard deviation in terms of the roughness parameters, ACF, and PSDF in most cases, meaning that it can generate accurate surfaces at every single simulation and is more stable and efficient. Therefore, the SRM is the most recommended method among the three methods studied." @default.
- W3217641891 created "2021-12-06" @default.
- W3217641891 creator A5037654441 @default.
- W3217641891 creator A5045650844 @default.
- W3217641891 creator A5071804542 @default.
- W3217641891 creator A5078113115 @default.
- W3217641891 creator A5088686051 @default.
- W3217641891 date "2022-02-01" @default.
- W3217641891 modified "2023-10-15" @default.
- W3217641891 title "A comparative study for selecting and using simulation methods of Gaussian random surfaces" @default.
- W3217641891 cites W1972162124 @default.
- W3217641891 cites W1973671557 @default.
- W3217641891 cites W1980497913 @default.
- W3217641891 cites W1982708500 @default.
- W3217641891 cites W1984451964 @default.
- W3217641891 cites W1999958866 @default.
- W3217641891 cites W2002081053 @default.
- W3217641891 cites W2011360018 @default.
- W3217641891 cites W2015888268 @default.
- W3217641891 cites W2034060532 @default.
- W3217641891 cites W2038030613 @default.
- W3217641891 cites W2047092901 @default.
- W3217641891 cites W2082664303 @default.
- W3217641891 cites W2084490457 @default.
- W3217641891 cites W2095430341 @default.
- W3217641891 cites W2130834708 @default.
- W3217641891 cites W2131070718 @default.
- W3217641891 cites W2134537845 @default.
- W3217641891 cites W2142215328 @default.
- W3217641891 cites W2163332287 @default.
- W3217641891 cites W2438369702 @default.
- W3217641891 cites W2606530234 @default.
- W3217641891 cites W2608416315 @default.
- W3217641891 cites W2754349249 @default.
- W3217641891 cites W2765718859 @default.
- W3217641891 cites W2768466350 @default.
- W3217641891 cites W2771348821 @default.
- W3217641891 cites W2782657349 @default.
- W3217641891 cites W2783199694 @default.
- W3217641891 cites W2791145439 @default.
- W3217641891 cites W2811081145 @default.
- W3217641891 cites W2888112223 @default.
- W3217641891 cites W2906560889 @default.
- W3217641891 cites W2912466853 @default.
- W3217641891 cites W2946931557 @default.
- W3217641891 cites W2992044649 @default.
- W3217641891 cites W3081119562 @default.
- W3217641891 cites W3122109505 @default.
- W3217641891 cites W3125963642 @default.
- W3217641891 doi "https://doi.org/10.1016/j.triboint.2021.107347" @default.
- W3217641891 hasPublicationYear "2022" @default.
- W3217641891 type Work @default.
- W3217641891 sameAs 3217641891 @default.
- W3217641891 citedByCount "4" @default.
- W3217641891 countsByYear W32176418912022 @default.
- W3217641891 countsByYear W32176418912023 @default.
- W3217641891 crossrefType "journal-article" @default.
- W3217641891 hasAuthorship W3217641891A5037654441 @default.
- W3217641891 hasAuthorship W3217641891A5045650844 @default.
- W3217641891 hasAuthorship W3217641891A5071804542 @default.
- W3217641891 hasAuthorship W3217641891A5078113115 @default.
- W3217641891 hasAuthorship W3217641891A5088686051 @default.
- W3217641891 hasConcept C105795698 @default.
- W3217641891 hasConcept C106131492 @default.
- W3217641891 hasConcept C106195933 @default.
- W3217641891 hasConcept C11413529 @default.
- W3217641891 hasConcept C121332964 @default.
- W3217641891 hasConcept C121864883 @default.
- W3217641891 hasConcept C159985019 @default.
- W3217641891 hasConcept C163716315 @default.
- W3217641891 hasConcept C168110828 @default.
- W3217641891 hasConcept C192562407 @default.
- W3217641891 hasConcept C197055811 @default.
- W3217641891 hasConcept C204323151 @default.
- W3217641891 hasConcept C22679943 @default.
- W3217641891 hasConcept C31972630 @default.
- W3217641891 hasConcept C33923547 @default.
- W3217641891 hasConcept C41008148 @default.
- W3217641891 hasConcept C5297727 @default.
- W3217641891 hasConcept C62520636 @default.
- W3217641891 hasConceptScore W3217641891C105795698 @default.
- W3217641891 hasConceptScore W3217641891C106131492 @default.
- W3217641891 hasConceptScore W3217641891C106195933 @default.
- W3217641891 hasConceptScore W3217641891C11413529 @default.
- W3217641891 hasConceptScore W3217641891C121332964 @default.
- W3217641891 hasConceptScore W3217641891C121864883 @default.
- W3217641891 hasConceptScore W3217641891C159985019 @default.
- W3217641891 hasConceptScore W3217641891C163716315 @default.
- W3217641891 hasConceptScore W3217641891C168110828 @default.
- W3217641891 hasConceptScore W3217641891C192562407 @default.
- W3217641891 hasConceptScore W3217641891C197055811 @default.
- W3217641891 hasConceptScore W3217641891C204323151 @default.
- W3217641891 hasConceptScore W3217641891C22679943 @default.
- W3217641891 hasConceptScore W3217641891C31972630 @default.
- W3217641891 hasConceptScore W3217641891C33923547 @default.
- W3217641891 hasConceptScore W3217641891C41008148 @default.
- W3217641891 hasConceptScore W3217641891C5297727 @default.
- W3217641891 hasConceptScore W3217641891C62520636 @default.