Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217668285> ?p ?o ?g. }
- W3217668285 endingPage "e764" @default.
- W3217668285 startingPage "e764" @default.
- W3217668285 abstract "The study of human posture analysis and gait event detection from various types of inputs is a key contribution to the human life log. With the help of this research and technologies humans can save costs in terms of time and utility resources. In this paper we present a robust approach to human posture analysis and gait event detection from complex video-based data. For this, initially posture information, landmark information are extracted, and human 2D skeleton mesh are extracted, using this information set we reconstruct the human 2D to 3D model. Contextual features, namely, degrees of freedom over detected body parts, joint angle information, periodic and non-periodic motion, and human motion direction flow, are extracted. For features mining, we applied the rule-based features mining technique and, for gait event detection and classification, the deep learning-based CNN technique is applied over the mpii-video pose, the COCO, and the pose track datasets. For the mpii-video pose dataset, we achieved a human landmark detection mean accuracy of 87.09% and a gait event recognition mean accuracy of 90.90%. For the COCO dataset, we achieved a human landmark detection mean accuracy of 87.36% and a gait event recognition mean accuracy of 89.09%. For the pose track dataset, we achieved a human landmark detection mean accuracy of 87.72% and a gait event recognition mean accuracy of 88.18%. The proposed system performance shows a significant improvement compared to existing state-of-the-art frameworks." @default.
- W3217668285 created "2021-12-06" @default.
- W3217668285 creator A5027431995 @default.
- W3217668285 creator A5056565300 @default.
- W3217668285 creator A5072951124 @default.
- W3217668285 creator A5089971928 @default.
- W3217668285 creator A5091859381 @default.
- W3217668285 date "2021-11-19" @default.
- W3217668285 modified "2023-09-23" @default.
- W3217668285 title "Syntactic model-based human body 3D reconstruction and event classification via association based features mining and deep learning" @default.
- W3217668285 cites W1483393862 @default.
- W3217668285 cites W1967320926 @default.
- W3217668285 cites W1981577403 @default.
- W3217668285 cites W2050282683 @default.
- W3217668285 cites W2116264069 @default.
- W3217668285 cites W2405454077 @default.
- W3217668285 cites W2569064097 @default.
- W3217668285 cites W2803023819 @default.
- W3217668285 cites W2806490840 @default.
- W3217668285 cites W2889508143 @default.
- W3217668285 cites W2905378458 @default.
- W3217668285 cites W2914340986 @default.
- W3217668285 cites W2947930228 @default.
- W3217668285 cites W2964094092 @default.
- W3217668285 cites W2980620290 @default.
- W3217668285 cites W2999723590 @default.
- W3217668285 cites W3001163539 @default.
- W3217668285 cites W3005313259 @default.
- W3217668285 cites W3011208089 @default.
- W3217668285 cites W3011934803 @default.
- W3217668285 cites W3013964275 @default.
- W3217668285 cites W3034733084 @default.
- W3217668285 cites W3035480680 @default.
- W3217668285 cites W3041107669 @default.
- W3217668285 cites W3044071265 @default.
- W3217668285 cites W3081509497 @default.
- W3217668285 cites W3108642393 @default.
- W3217668285 cites W3121874414 @default.
- W3217668285 cites W3134305571 @default.
- W3217668285 cites W3153753207 @default.
- W3217668285 cites W3156292869 @default.
- W3217668285 doi "https://doi.org/10.7717/peerj-cs.764" @default.
- W3217668285 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34901426" @default.
- W3217668285 hasPublicationYear "2021" @default.
- W3217668285 type Work @default.
- W3217668285 sameAs 3217668285 @default.
- W3217668285 citedByCount "22" @default.
- W3217668285 countsByYear W32176682852022 @default.
- W3217668285 countsByYear W32176682852023 @default.
- W3217668285 crossrefType "journal-article" @default.
- W3217668285 hasAuthorship W3217668285A5027431995 @default.
- W3217668285 hasAuthorship W3217668285A5056565300 @default.
- W3217668285 hasAuthorship W3217668285A5072951124 @default.
- W3217668285 hasAuthorship W3217668285A5089971928 @default.
- W3217668285 hasAuthorship W3217668285A5091859381 @default.
- W3217668285 hasBestOaLocation W32176682851 @default.
- W3217668285 hasConcept C108583219 @default.
- W3217668285 hasConcept C121332964 @default.
- W3217668285 hasConcept C151800584 @default.
- W3217668285 hasConcept C153180895 @default.
- W3217668285 hasConcept C154945302 @default.
- W3217668285 hasConcept C173906292 @default.
- W3217668285 hasConcept C177264268 @default.
- W3217668285 hasConcept C199360897 @default.
- W3217668285 hasConcept C2779662365 @default.
- W3217668285 hasConcept C2780297707 @default.
- W3217668285 hasConcept C31972630 @default.
- W3217668285 hasConcept C41008148 @default.
- W3217668285 hasConcept C42407357 @default.
- W3217668285 hasConcept C62520636 @default.
- W3217668285 hasConcept C86803240 @default.
- W3217668285 hasConceptScore W3217668285C108583219 @default.
- W3217668285 hasConceptScore W3217668285C121332964 @default.
- W3217668285 hasConceptScore W3217668285C151800584 @default.
- W3217668285 hasConceptScore W3217668285C153180895 @default.
- W3217668285 hasConceptScore W3217668285C154945302 @default.
- W3217668285 hasConceptScore W3217668285C173906292 @default.
- W3217668285 hasConceptScore W3217668285C177264268 @default.
- W3217668285 hasConceptScore W3217668285C199360897 @default.
- W3217668285 hasConceptScore W3217668285C2779662365 @default.
- W3217668285 hasConceptScore W3217668285C2780297707 @default.
- W3217668285 hasConceptScore W3217668285C31972630 @default.
- W3217668285 hasConceptScore W3217668285C41008148 @default.
- W3217668285 hasConceptScore W3217668285C42407357 @default.
- W3217668285 hasConceptScore W3217668285C62520636 @default.
- W3217668285 hasConceptScore W3217668285C86803240 @default.
- W3217668285 hasLocation W32176682851 @default.
- W3217668285 hasLocation W32176682852 @default.
- W3217668285 hasLocation W32176682853 @default.
- W3217668285 hasLocation W32176682854 @default.
- W3217668285 hasOpenAccess W3217668285 @default.
- W3217668285 hasPrimaryLocation W32176682851 @default.
- W3217668285 hasRelatedWork W166366606 @default.
- W3217668285 hasRelatedWork W2016546218 @default.
- W3217668285 hasRelatedWork W2098911910 @default.
- W3217668285 hasRelatedWork W2148343984 @default.
- W3217668285 hasRelatedWork W2352223314 @default.
- W3217668285 hasRelatedWork W2509104183 @default.