Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217679093> ?p ?o ?g. }
- W3217679093 abstract "Based on the known relationship between the human emotion and standard surface electrocardiogram (ECG), we explored the relationship between features extracted from standard ECG recorded during relaxation and seven personality traits (Honesty/humility, Emotionality, eXtraversion, Agreeableness, Conscientiousness, Openness, and Disintegration) by using the machine learning (ML) approach which learns from the ECG-based features and predicts the appropriate personality trait by adopting an automated software algorithm.A total of 71 healthy university students participated in the study. For quantification of 62 ECG-based parameters (heart rate variability, as well as temporal and amplitude-based parameters) for each ECG record, we used computation procedures together with publicly available data and code. Among 62 parameters, 34 were segregated into separate features according to their diagnostic relevance in clinical practice. To examine the feature influence on personality trait classification and to perform classification, we used random forest ML algorithm.Classification accuracy when clinically relevant ECG features were employed was high for Disintegration (81.3%) and Honesty/humility (75.0%) and moderate to high for Openness (73.3%) and Conscientiousness (70%), while it was low for Agreeableness (56.3%), eXtraversion (47.1%), and Emotionality (43.8%). When all calculated features were used, the classification accuracies were the same or lower, except for the eXtraversion (52.9%). Correlation analysis for selected features is presented.Results indicate that clinically relevant features might be applicable for personality traits prediction, although no remarkable differences were found among selected groups of parameters. Physiological associations of established relationships should be further explored." @default.
- W3217679093 created "2021-12-06" @default.
- W3217679093 creator A5015978180 @default.
- W3217679093 creator A5020327977 @default.
- W3217679093 creator A5021309751 @default.
- W3217679093 creator A5035489185 @default.
- W3217679093 creator A5085768005 @default.
- W3217679093 date "2021-11-27" @default.
- W3217679093 modified "2023-09-30" @default.
- W3217679093 title "Relationship between electrocardiogram‐based features and personality traits: Machine learning approach" @default.
- W3217679093 cites W1583278551 @default.
- W3217679093 cites W1973375973 @default.
- W3217679093 cites W1980332265 @default.
- W3217679093 cites W1986989640 @default.
- W3217679093 cites W1988103179 @default.
- W3217679093 cites W1996411348 @default.
- W3217679093 cites W2006873322 @default.
- W3217679093 cites W2012478917 @default.
- W3217679093 cites W2031610064 @default.
- W3217679093 cites W2035163080 @default.
- W3217679093 cites W2061435498 @default.
- W3217679093 cites W2063032299 @default.
- W3217679093 cites W2070075376 @default.
- W3217679093 cites W2070230130 @default.
- W3217679093 cites W2074278744 @default.
- W3217679093 cites W2077159863 @default.
- W3217679093 cites W2085792731 @default.
- W3217679093 cites W2110516088 @default.
- W3217679093 cites W2136857199 @default.
- W3217679093 cites W2143481518 @default.
- W3217679093 cites W2149886468 @default.
- W3217679093 cites W2150789152 @default.
- W3217679093 cites W2153106935 @default.
- W3217679093 cites W2153361728 @default.
- W3217679093 cites W2155231065 @default.
- W3217679093 cites W2156237672 @default.
- W3217679093 cites W2156332695 @default.
- W3217679093 cites W2158398361 @default.
- W3217679093 cites W2164368909 @default.
- W3217679093 cites W2268339064 @default.
- W3217679093 cites W2283684210 @default.
- W3217679093 cites W2284729062 @default.
- W3217679093 cites W2285072859 @default.
- W3217679093 cites W2301510059 @default.
- W3217679093 cites W2408287597 @default.
- W3217679093 cites W2464250145 @default.
- W3217679093 cites W2709067313 @default.
- W3217679093 cites W2756341873 @default.
- W3217679093 cites W2763974038 @default.
- W3217679093 cites W2885432708 @default.
- W3217679093 cites W2911964244 @default.
- W3217679093 cites W2970154784 @default.
- W3217679093 cites W2981004543 @default.
- W3217679093 cites W3001707814 @default.
- W3217679093 cites W3045608769 @default.
- W3217679093 cites W3152149068 @default.
- W3217679093 cites W4211136879 @default.
- W3217679093 cites W4321428219 @default.
- W3217679093 cites W2979823992 @default.
- W3217679093 doi "https://doi.org/10.1111/anec.12919" @default.
- W3217679093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34837662" @default.
- W3217679093 hasPublicationYear "2021" @default.
- W3217679093 type Work @default.
- W3217679093 sameAs 3217679093 @default.
- W3217679093 citedByCount "2" @default.
- W3217679093 countsByYear W32176790932022 @default.
- W3217679093 countsByYear W32176790932023 @default.
- W3217679093 crossrefType "journal-article" @default.
- W3217679093 hasAuthorship W3217679093A5015978180 @default.
- W3217679093 hasAuthorship W3217679093A5020327977 @default.
- W3217679093 hasAuthorship W3217679093A5021309751 @default.
- W3217679093 hasAuthorship W3217679093A5035489185 @default.
- W3217679093 hasAuthorship W3217679093A5085768005 @default.
- W3217679093 hasBestOaLocation W32176790933 @default.
- W3217679093 hasConcept C119857082 @default.
- W3217679093 hasConcept C127816348 @default.
- W3217679093 hasConcept C154945302 @default.
- W3217679093 hasConcept C15744967 @default.
- W3217679093 hasConcept C170760736 @default.
- W3217679093 hasConcept C172141706 @default.
- W3217679093 hasConcept C187288502 @default.
- W3217679093 hasConcept C2865642 @default.
- W3217679093 hasConcept C41008148 @default.
- W3217679093 hasConcept C70410870 @default.
- W3217679093 hasConcept C71924100 @default.
- W3217679093 hasConcept C77805123 @default.
- W3217679093 hasConcept C84976871 @default.
- W3217679093 hasConceptScore W3217679093C119857082 @default.
- W3217679093 hasConceptScore W3217679093C127816348 @default.
- W3217679093 hasConceptScore W3217679093C154945302 @default.
- W3217679093 hasConceptScore W3217679093C15744967 @default.
- W3217679093 hasConceptScore W3217679093C170760736 @default.
- W3217679093 hasConceptScore W3217679093C172141706 @default.
- W3217679093 hasConceptScore W3217679093C187288502 @default.
- W3217679093 hasConceptScore W3217679093C2865642 @default.
- W3217679093 hasConceptScore W3217679093C41008148 @default.
- W3217679093 hasConceptScore W3217679093C70410870 @default.
- W3217679093 hasConceptScore W3217679093C71924100 @default.
- W3217679093 hasConceptScore W3217679093C77805123 @default.
- W3217679093 hasConceptScore W3217679093C84976871 @default.