Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217688506> ?p ?o ?g. }
- W3217688506 endingPage "1691" @default.
- W3217688506 startingPage "1667" @default.
- W3217688506 abstract "Nonlinear characteristic widely exists in industrial processes. Many approaches based on kernel methods and machine learning have been developed for nonlinear process monitoring. However, the fault isolation for nonlinear processes has rarely been studied in previous works. In this paper, a process monitoring and fault isolation framework is proposed for nonlinear processes using variational autoencoder (VAE) model. First, based on the probability graph model of VAE, a uniform monitoring index can be calculated by the probability density of observation variables. Then, the fault variables are estimated with normal variables by a missing value estimation method. The optimal fault variable set can be searched by branch and bound (BAB) algorithm. The proposed method can resolve the ”smearing effects” problem existing in traditional fault isolation methods. Finally, a numerical case and a hot strip mill process case are used to verified the proposed method." @default.
- W3217688506 created "2021-12-06" @default.
- W3217688506 creator A5016153320 @default.
- W3217688506 creator A5065538013 @default.
- W3217688506 creator A5073780213 @default.
- W3217688506 date "2022-01-01" @default.
- W3217688506 modified "2023-10-04" @default.
- W3217688506 title "A process monitoring and fault isolation framework based on variational autoencoders and branch and bound method" @default.
- W3217688506 cites W1966863755 @default.
- W3217688506 cites W1967989298 @default.
- W3217688506 cites W1974957373 @default.
- W3217688506 cites W1988169309 @default.
- W3217688506 cites W1994505190 @default.
- W3217688506 cites W1998940406 @default.
- W3217688506 cites W2002268936 @default.
- W3217688506 cites W2003250770 @default.
- W3217688506 cites W2020405858 @default.
- W3217688506 cites W2068193536 @default.
- W3217688506 cites W2074059655 @default.
- W3217688506 cites W2084408974 @default.
- W3217688506 cites W2094912122 @default.
- W3217688506 cites W2137015384 @default.
- W3217688506 cites W2147129131 @default.
- W3217688506 cites W2158958729 @default.
- W3217688506 cites W2214839515 @default.
- W3217688506 cites W2305667248 @default.
- W3217688506 cites W2520169384 @default.
- W3217688506 cites W2520249960 @default.
- W3217688506 cites W2742763523 @default.
- W3217688506 cites W2771178425 @default.
- W3217688506 cites W2791519413 @default.
- W3217688506 cites W2794239758 @default.
- W3217688506 cites W2800666469 @default.
- W3217688506 cites W2891488123 @default.
- W3217688506 cites W2897826427 @default.
- W3217688506 cites W290462016 @default.
- W3217688506 cites W2912345712 @default.
- W3217688506 cites W2916182456 @default.
- W3217688506 cites W2945532623 @default.
- W3217688506 cites W2948460228 @default.
- W3217688506 cites W2996007412 @default.
- W3217688506 doi "https://doi.org/10.1016/j.jfranklin.2021.11.016" @default.
- W3217688506 hasPublicationYear "2022" @default.
- W3217688506 type Work @default.
- W3217688506 sameAs 3217688506 @default.
- W3217688506 citedByCount "6" @default.
- W3217688506 countsByYear W32176885062022 @default.
- W3217688506 countsByYear W32176885062023 @default.
- W3217688506 crossrefType "journal-article" @default.
- W3217688506 hasAuthorship W3217688506A5016153320 @default.
- W3217688506 hasAuthorship W3217688506A5065538013 @default.
- W3217688506 hasAuthorship W3217688506A5073780213 @default.
- W3217688506 hasConcept C101738243 @default.
- W3217688506 hasConcept C105795698 @default.
- W3217688506 hasConcept C111919701 @default.
- W3217688506 hasConcept C11413529 @default.
- W3217688506 hasConcept C114614502 @default.
- W3217688506 hasConcept C121332964 @default.
- W3217688506 hasConcept C127313418 @default.
- W3217688506 hasConcept C152745839 @default.
- W3217688506 hasConcept C154945302 @default.
- W3217688506 hasConcept C158622935 @default.
- W3217688506 hasConcept C165205528 @default.
- W3217688506 hasConcept C172707124 @default.
- W3217688506 hasConcept C175551986 @default.
- W3217688506 hasConcept C185429906 @default.
- W3217688506 hasConcept C33923547 @default.
- W3217688506 hasConcept C41008148 @default.
- W3217688506 hasConcept C50644808 @default.
- W3217688506 hasConcept C62520636 @default.
- W3217688506 hasConcept C71134354 @default.
- W3217688506 hasConcept C74193536 @default.
- W3217688506 hasConcept C98045186 @default.
- W3217688506 hasConceptScore W3217688506C101738243 @default.
- W3217688506 hasConceptScore W3217688506C105795698 @default.
- W3217688506 hasConceptScore W3217688506C111919701 @default.
- W3217688506 hasConceptScore W3217688506C11413529 @default.
- W3217688506 hasConceptScore W3217688506C114614502 @default.
- W3217688506 hasConceptScore W3217688506C121332964 @default.
- W3217688506 hasConceptScore W3217688506C127313418 @default.
- W3217688506 hasConceptScore W3217688506C152745839 @default.
- W3217688506 hasConceptScore W3217688506C154945302 @default.
- W3217688506 hasConceptScore W3217688506C158622935 @default.
- W3217688506 hasConceptScore W3217688506C165205528 @default.
- W3217688506 hasConceptScore W3217688506C172707124 @default.
- W3217688506 hasConceptScore W3217688506C175551986 @default.
- W3217688506 hasConceptScore W3217688506C185429906 @default.
- W3217688506 hasConceptScore W3217688506C33923547 @default.
- W3217688506 hasConceptScore W3217688506C41008148 @default.
- W3217688506 hasConceptScore W3217688506C50644808 @default.
- W3217688506 hasConceptScore W3217688506C62520636 @default.
- W3217688506 hasConceptScore W3217688506C71134354 @default.
- W3217688506 hasConceptScore W3217688506C74193536 @default.
- W3217688506 hasConceptScore W3217688506C98045186 @default.
- W3217688506 hasFunder F4320321001 @default.
- W3217688506 hasFunder F4320335777 @default.
- W3217688506 hasFunder F4320335787 @default.
- W3217688506 hasIssue "2" @default.