Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217689336> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3217689336 endingPage "vi138" @default.
- W3217689336 startingPage "vi138" @default.
- W3217689336 abstract "Abstract Infiltrative glioma beyond contrast enhancement on MRI is often difficult to identify with conventional imaging. In this study, we use large-format autopsy samples aligned to multi-parametric MRI to test the hypothesis that radio-pathomic machine learning models are able to accurately identify areas of infiltrative tumor beyond the contrast enhancing region. At autopsy, 140 tissue samples from 62 brain cancer patients were collected from brain slices sectioned to align with the patients’ last clinical MRI prior to death. Cell, extra-cellular fluid (ECF), and cytoplasm densities were computed from digitized, hematoxylin and eosin-stained samples, and a subset of 20 slides from 9 patients were annotated for tumor presence by a pathologist-trained technician. In-house custom software was used to align the tissue samples to the patients’ last clinical imaging, which included pre- and post-contrast T1, FLAIR, and ADC images. Bagging random forest models were then trained to predict cellularity, ECF, and cytoplasm density using 5-by-5 voxel tiles from each MRI as input. A 2/3-1/3 train-test split was used to validate model generalizability. A naïve Bayes classifier was trained to predict tumor class using cellularity, ECF, and cytoplasm segmentations within the annotation data set, again using a 2/3-1/3 train-test split to validate performance. The random forest models each accurately predicted cellularity, ECF, and cytoplasm density within the test data set, with root-mean-squared error values for each falling within one standard deviation of the ground truth. The histology-based tumor prediction model accurately predicted tumor, with a test set ROC AUC of 0.86. When using whole brain cellularity, ECF, and cytoplasm predictions from the random forest models as inputs for the naïve Bayes classifier, tumor probability maps identified regions of infiltrative tumor beyond contrast enhancement. Our results suggest that radio-pathomic maps of tumor probability accurately identify regions of infiltrative tumor beyond currently accepted MRI signatures." @default.
- W3217689336 created "2021-12-06" @default.
- W3217689336 creator A5002153693 @default.
- W3217689336 creator A5010160621 @default.
- W3217689336 creator A5032574031 @default.
- W3217689336 creator A5034479560 @default.
- W3217689336 creator A5044298637 @default.
- W3217689336 creator A5044849434 @default.
- W3217689336 creator A5073240775 @default.
- W3217689336 creator A5083346483 @default.
- W3217689336 creator A5089858638 @default.
- W3217689336 creator A5090441302 @default.
- W3217689336 creator A5091546375 @default.
- W3217689336 date "2021-11-02" @default.
- W3217689336 modified "2023-09-23" @default.
- W3217689336 title "NIMG-42. MP-MRI-BASED TUMOR PROBABILITY MAPS TRAINED USING AUTOPSY TISSUE SAMPLES AS GROUND TRUTH NON-INVASIVELY PREDICT INFILTRATIVE TUMOR BEYOND THE CONTRAST ENHANCING REGION" @default.
- W3217689336 doi "https://doi.org/10.1093/neuonc/noab196.541" @default.
- W3217689336 hasPublicationYear "2021" @default.
- W3217689336 type Work @default.
- W3217689336 sameAs 3217689336 @default.
- W3217689336 citedByCount "0" @default.
- W3217689336 crossrefType "journal-article" @default.
- W3217689336 hasAuthorship W3217689336A5002153693 @default.
- W3217689336 hasAuthorship W3217689336A5010160621 @default.
- W3217689336 hasAuthorship W3217689336A5032574031 @default.
- W3217689336 hasAuthorship W3217689336A5034479560 @default.
- W3217689336 hasAuthorship W3217689336A5044298637 @default.
- W3217689336 hasAuthorship W3217689336A5044849434 @default.
- W3217689336 hasAuthorship W3217689336A5073240775 @default.
- W3217689336 hasAuthorship W3217689336A5083346483 @default.
- W3217689336 hasAuthorship W3217689336A5089858638 @default.
- W3217689336 hasAuthorship W3217689336A5090441302 @default.
- W3217689336 hasAuthorship W3217689336A5091546375 @default.
- W3217689336 hasBestOaLocation W32176893361 @default.
- W3217689336 hasConcept C101070640 @default.
- W3217689336 hasConcept C12267149 @default.
- W3217689336 hasConcept C125473707 @default.
- W3217689336 hasConcept C126838900 @default.
- W3217689336 hasConcept C142724271 @default.
- W3217689336 hasConcept C143409427 @default.
- W3217689336 hasConcept C146849305 @default.
- W3217689336 hasConcept C154945302 @default.
- W3217689336 hasConcept C169258074 @default.
- W3217689336 hasConcept C169903167 @default.
- W3217689336 hasConcept C2776502983 @default.
- W3217689336 hasConcept C2779130545 @default.
- W3217689336 hasConcept C2989005 @default.
- W3217689336 hasConcept C41008148 @default.
- W3217689336 hasConcept C52001869 @default.
- W3217689336 hasConcept C54170458 @default.
- W3217689336 hasConcept C71924100 @default.
- W3217689336 hasConcept C74864618 @default.
- W3217689336 hasConceptScore W3217689336C101070640 @default.
- W3217689336 hasConceptScore W3217689336C12267149 @default.
- W3217689336 hasConceptScore W3217689336C125473707 @default.
- W3217689336 hasConceptScore W3217689336C126838900 @default.
- W3217689336 hasConceptScore W3217689336C142724271 @default.
- W3217689336 hasConceptScore W3217689336C143409427 @default.
- W3217689336 hasConceptScore W3217689336C146849305 @default.
- W3217689336 hasConceptScore W3217689336C154945302 @default.
- W3217689336 hasConceptScore W3217689336C169258074 @default.
- W3217689336 hasConceptScore W3217689336C169903167 @default.
- W3217689336 hasConceptScore W3217689336C2776502983 @default.
- W3217689336 hasConceptScore W3217689336C2779130545 @default.
- W3217689336 hasConceptScore W3217689336C2989005 @default.
- W3217689336 hasConceptScore W3217689336C41008148 @default.
- W3217689336 hasConceptScore W3217689336C52001869 @default.
- W3217689336 hasConceptScore W3217689336C54170458 @default.
- W3217689336 hasConceptScore W3217689336C71924100 @default.
- W3217689336 hasConceptScore W3217689336C74864618 @default.
- W3217689336 hasIssue "Supplement_6" @default.
- W3217689336 hasLocation W32176893361 @default.
- W3217689336 hasOpenAccess W3217689336 @default.
- W3217689336 hasPrimaryLocation W32176893361 @default.
- W3217689336 hasRelatedWork W2318808517 @default.
- W3217689336 hasRelatedWork W2972825513 @default.
- W3217689336 hasRelatedWork W3106359073 @default.
- W3217689336 hasRelatedWork W3111951102 @default.
- W3217689336 hasRelatedWork W3204641204 @default.
- W3217689336 hasRelatedWork W3217689336 @default.
- W3217689336 hasRelatedWork W4223631995 @default.
- W3217689336 hasRelatedWork W4232787733 @default.
- W3217689336 hasRelatedWork W4280583453 @default.
- W3217689336 hasRelatedWork W4283016678 @default.
- W3217689336 hasVolume "23" @default.
- W3217689336 isParatext "false" @default.
- W3217689336 isRetracted "false" @default.
- W3217689336 magId "3217689336" @default.
- W3217689336 workType "article" @default.