Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217690000> ?p ?o ?g. }
- W3217690000 endingPage "4537" @default.
- W3217690000 startingPage "4526" @default.
- W3217690000 abstract "Symmetric nonnegative matrix factorization (SNMF) has demonstrated to be a powerful method for data clustering. However, SNMF is mathematically formulated as a non-convex optimization problem, making it sensitive to the initialization of variables. Inspired by ensemble clustering that aims to seek a better clustering result from a set of clustering results, we propose self-supervised SNMF (S <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>3</sup> NMF), which is capable of boosting clustering performance progressively by taking advantage of the sensitivity to initialization characteristic of SNMF, without relying on any additional information. Specifically, we first perform SNMF repeatedly with a random positive matrix for initialization each time, leading to multiple decomposed matrices. Then, we rank the quality of the resulting matrices with adaptively learned weights, from which a new similarity matrix that is expected to be more discriminative is reconstructed for SNMF again. These two steps are iterated until the stopping criterion/maximum number of iterations is achieved. We mathematically formulate S <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>3</sup> NMF as a constrained optimization problem, and provide an alternative optimization algorithm to solve it with the theoretical convergence guaranteed. Extensive experimental results on 10 commonly used benchmark datasets demonstrate the significant advantage of our S <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>3</sup> NMF over 14 state-of-the-art methods in terms of 5 quantitative metrics. The source code is publicly available at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/jyh-learning/SSSNMF</uri> ." @default.
- W3217690000 created "2021-12-06" @default.
- W3217690000 creator A5000546219 @default.
- W3217690000 creator A5008386708 @default.
- W3217690000 creator A5013880628 @default.
- W3217690000 creator A5031957432 @default.
- W3217690000 creator A5044301848 @default.
- W3217690000 date "2022-07-01" @default.
- W3217690000 modified "2023-10-16" @default.
- W3217690000 title "Self-Supervised Symmetric Nonnegative Matrix Factorization" @default.
- W3217690000 cites W1084418525 @default.
- W3217690000 cites W1504886279 @default.
- W3217690000 cites W1902027874 @default.
- W3217690000 cites W1966286510 @default.
- W3217690000 cites W1973880717 @default.
- W3217690000 cites W2020510457 @default.
- W3217690000 cites W2067931421 @default.
- W3217690000 cites W2087382273 @default.
- W3217690000 cites W2132914434 @default.
- W3217690000 cites W2136635436 @default.
- W3217690000 cites W2144359569 @default.
- W3217690000 cites W2147339185 @default.
- W3217690000 cites W2163886442 @default.
- W3217690000 cites W2279323413 @default.
- W3217690000 cites W2313416037 @default.
- W3217690000 cites W2400732335 @default.
- W3217690000 cites W2405678381 @default.
- W3217690000 cites W2466904943 @default.
- W3217690000 cites W2493084460 @default.
- W3217690000 cites W2532206188 @default.
- W3217690000 cites W2568618480 @default.
- W3217690000 cites W2571268788 @default.
- W3217690000 cites W2586284062 @default.
- W3217690000 cites W2608547192 @default.
- W3217690000 cites W2751076613 @default.
- W3217690000 cites W2782630728 @default.
- W3217690000 cites W2787895813 @default.
- W3217690000 cites W2788589966 @default.
- W3217690000 cites W2788615138 @default.
- W3217690000 cites W2804454015 @default.
- W3217690000 cites W2807998883 @default.
- W3217690000 cites W2888654602 @default.
- W3217690000 cites W2905056852 @default.
- W3217690000 cites W2909324822 @default.
- W3217690000 cites W2911276231 @default.
- W3217690000 cites W2952171869 @default.
- W3217690000 cites W2954682230 @default.
- W3217690000 cites W2963013895 @default.
- W3217690000 cites W3008534764 @default.
- W3217690000 cites W3019223480 @default.
- W3217690000 cites W3091661269 @default.
- W3217690000 cites W62192748 @default.
- W3217690000 doi "https://doi.org/10.1109/tcsvt.2021.3129365" @default.
- W3217690000 hasPublicationYear "2022" @default.
- W3217690000 type Work @default.
- W3217690000 sameAs 3217690000 @default.
- W3217690000 citedByCount "4" @default.
- W3217690000 countsByYear W32176900002023 @default.
- W3217690000 crossrefType "journal-article" @default.
- W3217690000 hasAuthorship W3217690000A5000546219 @default.
- W3217690000 hasAuthorship W3217690000A5008386708 @default.
- W3217690000 hasAuthorship W3217690000A5013880628 @default.
- W3217690000 hasAuthorship W3217690000A5031957432 @default.
- W3217690000 hasAuthorship W3217690000A5044301848 @default.
- W3217690000 hasBestOaLocation W32176900002 @default.
- W3217690000 hasConcept C106487976 @default.
- W3217690000 hasConcept C114466953 @default.
- W3217690000 hasConcept C121332964 @default.
- W3217690000 hasConcept C126255220 @default.
- W3217690000 hasConcept C152671427 @default.
- W3217690000 hasConcept C154945302 @default.
- W3217690000 hasConcept C158693339 @default.
- W3217690000 hasConcept C159985019 @default.
- W3217690000 hasConcept C192562407 @default.
- W3217690000 hasConcept C199360897 @default.
- W3217690000 hasConcept C33923547 @default.
- W3217690000 hasConcept C41008148 @default.
- W3217690000 hasConcept C42355184 @default.
- W3217690000 hasConcept C62520636 @default.
- W3217690000 hasConcept C73555534 @default.
- W3217690000 hasConceptScore W3217690000C106487976 @default.
- W3217690000 hasConceptScore W3217690000C114466953 @default.
- W3217690000 hasConceptScore W3217690000C121332964 @default.
- W3217690000 hasConceptScore W3217690000C126255220 @default.
- W3217690000 hasConceptScore W3217690000C152671427 @default.
- W3217690000 hasConceptScore W3217690000C154945302 @default.
- W3217690000 hasConceptScore W3217690000C158693339 @default.
- W3217690000 hasConceptScore W3217690000C159985019 @default.
- W3217690000 hasConceptScore W3217690000C192562407 @default.
- W3217690000 hasConceptScore W3217690000C199360897 @default.
- W3217690000 hasConceptScore W3217690000C33923547 @default.
- W3217690000 hasConceptScore W3217690000C41008148 @default.
- W3217690000 hasConceptScore W3217690000C42355184 @default.
- W3217690000 hasConceptScore W3217690000C62520636 @default.
- W3217690000 hasConceptScore W3217690000C73555534 @default.
- W3217690000 hasFunder F4320321001 @default.
- W3217690000 hasFunder F4320321592 @default.
- W3217690000 hasFunder F4320322769 @default.