Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217760110> ?p ?o ?g. }
- W3217760110 endingPage "109423" @default.
- W3217760110 startingPage "109423" @default.
- W3217760110 abstract "Given energy metabolism, visual information degradation plays an essential role in the retina- lateral geniculate nucleus (LGN)-primary visual cortex (V1)-secondary visual cortex (V2) pathway, and is a pivotal issue for visual information processing. Degradation helps the visual nervous system conserve brain energy and efficiently perceive the real world even though a small fraction of visual information reaches the early visual areas. The coding of contour features (edge and corner) is achieved in the retina-LGN-V1-V2 pathway. Based on the above, we proposed a contour detection model based on degradation (CDMD). Inspired by pupillary light reflex regulation, we took into consideration the novel approach of the hue-saturation-value (HSV) module for color encoding to meet the subtle chromaticity change rather than using the traditional red-green-blue (RGB) module, following the mechanisms of dark (DA) and light (LA) adaptation processes in photoreceptors. Meanwhile, the degradation mechanism was introduced as a novel strategy focusing only on the essential information to detect contour features, mimicking contour detection by visual perception under the restriction of axons in each optic nerve biologically. Ultimately, we employed the feedback mechanism achieving the optimal HSV value for each pixel of the experimental datasets. We used the publicly available Berkeley Segmentation Data Set 500 (BSDS500) to assess the effectiveness of our CDMD model, introduced the F-measure to evaluate the results. The F-measure score was 0.65, achieved by our model. Moreover, CDMD with HSV has a better sensitivity for subtle chromaticity changes than CDMD with RGB. Experimental results demonstrated that our CDMD model, which functions close to the real visual system, achieved a more competitive performance with low computational cost than some state-of-the-art non-deep-learning and biologically inspired models. Compared with deep-learning-based algorithms, our model contains fewer parameters and computation time, does not require additional visual features, as well as an extra training process. Our proposed CDMD model is a novel approach for contour detection, which mimics the cognitive function of contour detection in early visual areas, and realizes a competitive performance in image processing. It contributes to bridging the gap between the biological visual system and computer vision." @default.
- W3217760110 created "2021-12-06" @default.
- W3217760110 creator A5026577634 @default.
- W3217760110 creator A5079998613 @default.
- W3217760110 date "2022-03-01" @default.
- W3217760110 modified "2023-10-14" @default.
- W3217760110 title "A visual-degradation-inspired model with HSV color-encoding for contour detection" @default.
- W3217760110 cites W1525356656 @default.
- W3217760110 cites W1605102919 @default.
- W3217760110 cites W1930528368 @default.
- W3217760110 cites W1961778296 @default.
- W3217760110 cites W1964602001 @default.
- W3217760110 cites W1991367009 @default.
- W3217760110 cites W1999478155 @default.
- W3217760110 cites W2000532519 @default.
- W3217760110 cites W2019278291 @default.
- W3217760110 cites W2022616811 @default.
- W3217760110 cites W2028489556 @default.
- W3217760110 cites W2036576620 @default.
- W3217760110 cites W2040072996 @default.
- W3217760110 cites W2045899586 @default.
- W3217760110 cites W2085487061 @default.
- W3217760110 cites W2101275625 @default.
- W3217760110 cites W2110158442 @default.
- W3217760110 cites W2119823327 @default.
- W3217760110 cites W2121947440 @default.
- W3217760110 cites W2145023731 @default.
- W3217760110 cites W2148764920 @default.
- W3217760110 cites W2157732540 @default.
- W3217760110 cites W2161567010 @default.
- W3217760110 cites W2519788000 @default.
- W3217760110 cites W2568803015 @default.
- W3217760110 cites W2602629628 @default.
- W3217760110 cites W2733764802 @default.
- W3217760110 cites W2769989889 @default.
- W3217760110 cites W2788818070 @default.
- W3217760110 cites W2803696107 @default.
- W3217760110 cites W2805139026 @default.
- W3217760110 cites W2807830984 @default.
- W3217760110 cites W2945093221 @default.
- W3217760110 cites W2945546743 @default.
- W3217760110 cites W2953073128 @default.
- W3217760110 cites W2992822522 @default.
- W3217760110 cites W2999715747 @default.
- W3217760110 cites W3027330060 @default.
- W3217760110 cites W3192013196 @default.
- W3217760110 cites W845365781 @default.
- W3217760110 doi "https://doi.org/10.1016/j.jneumeth.2021.109423" @default.
- W3217760110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34826502" @default.
- W3217760110 hasPublicationYear "2022" @default.
- W3217760110 type Work @default.
- W3217760110 sameAs 3217760110 @default.
- W3217760110 citedByCount "4" @default.
- W3217760110 countsByYear W32177601102022 @default.
- W3217760110 countsByYear W32177601102023 @default.
- W3217760110 crossrefType "journal-article" @default.
- W3217760110 hasAuthorship W3217760110A5026577634 @default.
- W3217760110 hasAuthorship W3217760110A5079998613 @default.
- W3217760110 hasBestOaLocation W32177601101 @default.
- W3217760110 hasConcept C119088629 @default.
- W3217760110 hasConcept C153180895 @default.
- W3217760110 hasConcept C154945302 @default.
- W3217760110 hasConcept C169760540 @default.
- W3217760110 hasConcept C201780734 @default.
- W3217760110 hasConcept C2776362945 @default.
- W3217760110 hasConcept C2779345533 @default.
- W3217760110 hasConcept C31972630 @default.
- W3217760110 hasConcept C41008148 @default.
- W3217760110 hasConcept C86803240 @default.
- W3217760110 hasConceptScore W3217760110C119088629 @default.
- W3217760110 hasConceptScore W3217760110C153180895 @default.
- W3217760110 hasConceptScore W3217760110C154945302 @default.
- W3217760110 hasConceptScore W3217760110C169760540 @default.
- W3217760110 hasConceptScore W3217760110C201780734 @default.
- W3217760110 hasConceptScore W3217760110C2776362945 @default.
- W3217760110 hasConceptScore W3217760110C2779345533 @default.
- W3217760110 hasConceptScore W3217760110C31972630 @default.
- W3217760110 hasConceptScore W3217760110C41008148 @default.
- W3217760110 hasConceptScore W3217760110C86803240 @default.
- W3217760110 hasFunder F4320321001 @default.
- W3217760110 hasLocation W32177601101 @default.
- W3217760110 hasLocation W32177601102 @default.
- W3217760110 hasOpenAccess W3217760110 @default.
- W3217760110 hasPrimaryLocation W32177601101 @default.
- W3217760110 hasRelatedWork W1553712042 @default.
- W3217760110 hasRelatedWork W1975917962 @default.
- W3217760110 hasRelatedWork W1989534683 @default.
- W3217760110 hasRelatedWork W2035649158 @default.
- W3217760110 hasRelatedWork W2071463667 @default.
- W3217760110 hasRelatedWork W2072521404 @default.
- W3217760110 hasRelatedWork W2085693456 @default.
- W3217760110 hasRelatedWork W2113455284 @default.
- W3217760110 hasRelatedWork W3141014441 @default.
- W3217760110 hasRelatedWork W2557652914 @default.
- W3217760110 hasVolume "369" @default.
- W3217760110 isParatext "false" @default.
- W3217760110 isRetracted "false" @default.
- W3217760110 magId "3217760110" @default.