Matches in SemOpenAlex for { <https://semopenalex.org/work/W3217761402> ?p ?o ?g. }
- W3217761402 endingPage "300" @default.
- W3217761402 startingPage "291" @default.
- W3217761402 abstract "To describe the use of artificial intelligence (AI) in medical literature and trial data extraction, and its applications in uro-oncology. This bridging review, which consolidates information from the diverse applications of AI, highlights how AI users can investigate more sophisticated queries than with traditional methods, leading to synthesis of raw data and complex outputs into more actionable and personalised results, particularly in the field of uro-oncology.Literature and clinical trial searches were performed in PubMed, Dimensions, Embase and Google (1999-2020). The searches focussed on the use of AI and its various forms to facilitate literature searches, clinical guidelines development, and clinical trial data extraction in uro-oncology. To illustrate how AI can be applied to address questions about optimising therapeutic decision making and individualising treatment regimens, the Dimensions-linked information platform was searched for 'prostate cancer' keywords (76 publications were identified; 48 were included).AI offers the promise of transforming raw data and complex outputs into actionable insights. Literature and clinical trial searches can be automated, enabling clinicians to develop and analyse publications expeditiously on complex issues such as therapeutic sequencing and to obtain updates on documents that evolve at the pace and scope of the landscape. An AI-based platform inclusive of 12 trial databases and >100 scientific literature sources enabled the creation of an interactive visualisation.As the literature and clinical trial landscape continues to grow in complexity and with increasing speed, the ability to pull the right information at the right time from different search engines and resources, while excluding social media bias, becomes more challenging. This review demonstrates that by applying natural language processing and machine learning algorithms, validated and optimised AI leads to a speedier, more personalised, efficient, and focussed search compared with traditional methods." @default.
- W3217761402 created "2021-12-06" @default.
- W3217761402 creator A5004985848 @default.
- W3217761402 creator A5008083664 @default.
- W3217761402 creator A5008182909 @default.
- W3217761402 creator A5047395289 @default.
- W3217761402 creator A5079799214 @default.
- W3217761402 creator A5086583298 @default.
- W3217761402 date "2022-01-17" @default.
- W3217761402 modified "2023-10-05" @default.
- W3217761402 title "Application of artificial intelligence to overcome clinical information overload in urological cancer" @default.
- W3217761402 cites W1996681001 @default.
- W3217761402 cites W2002969368 @default.
- W3217761402 cites W2108596183 @default.
- W3217761402 cites W2139945672 @default.
- W3217761402 cites W2162965868 @default.
- W3217761402 cites W2397182203 @default.
- W3217761402 cites W2625124642 @default.
- W3217761402 cites W2787894218 @default.
- W3217761402 cites W2788941211 @default.
- W3217761402 cites W2790681451 @default.
- W3217761402 cites W2801170057 @default.
- W3217761402 cites W2808847453 @default.
- W3217761402 cites W2840697542 @default.
- W3217761402 cites W2891843126 @default.
- W3217761402 cites W2893425640 @default.
- W3217761402 cites W2897336679 @default.
- W3217761402 cites W2898482972 @default.
- W3217761402 cites W2903272045 @default.
- W3217761402 cites W2906295032 @default.
- W3217761402 cites W2913593516 @default.
- W3217761402 cites W2952853771 @default.
- W3217761402 cites W2955890777 @default.
- W3217761402 cites W2961191798 @default.
- W3217761402 cites W2962754229 @default.
- W3217761402 cites W2963794755 @default.
- W3217761402 cites W2966660127 @default.
- W3217761402 cites W2968550030 @default.
- W3217761402 cites W2975740735 @default.
- W3217761402 cites W2979042524 @default.
- W3217761402 cites W2979495041 @default.
- W3217761402 cites W2989461521 @default.
- W3217761402 cites W2994977308 @default.
- W3217761402 cites W2997139801 @default.
- W3217761402 cites W3011343877 @default.
- W3217761402 cites W3016484843 @default.
- W3217761402 cites W3082078093 @default.
- W3217761402 cites W3098949126 @default.
- W3217761402 cites W3103536203 @default.
- W3217761402 cites W3105992983 @default.
- W3217761402 cites W3118721495 @default.
- W3217761402 cites W3157230635 @default.
- W3217761402 cites W3200445016 @default.
- W3217761402 cites W4242823877 @default.
- W3217761402 cites W990652630 @default.
- W3217761402 doi "https://doi.org/10.1111/bju.15662" @default.
- W3217761402 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34846775" @default.
- W3217761402 hasPublicationYear "2022" @default.
- W3217761402 type Work @default.
- W3217761402 sameAs 3217761402 @default.
- W3217761402 citedByCount "3" @default.
- W3217761402 countsByYear W32177614022022 @default.
- W3217761402 countsByYear W32177614022023 @default.
- W3217761402 crossrefType "journal-article" @default.
- W3217761402 hasAuthorship W3217761402A5004985848 @default.
- W3217761402 hasAuthorship W3217761402A5008083664 @default.
- W3217761402 hasAuthorship W3217761402A5008182909 @default.
- W3217761402 hasAuthorship W3217761402A5047395289 @default.
- W3217761402 hasAuthorship W3217761402A5079799214 @default.
- W3217761402 hasAuthorship W3217761402A5086583298 @default.
- W3217761402 hasBestOaLocation W32177614021 @default.
- W3217761402 hasConcept C13280743 @default.
- W3217761402 hasConcept C132964779 @default.
- W3217761402 hasConcept C142724271 @default.
- W3217761402 hasConcept C174348530 @default.
- W3217761402 hasConcept C17744445 @default.
- W3217761402 hasConcept C19527891 @default.
- W3217761402 hasConcept C199360897 @default.
- W3217761402 hasConcept C199539241 @default.
- W3217761402 hasConcept C205649164 @default.
- W3217761402 hasConcept C2522767166 @default.
- W3217761402 hasConcept C2777466982 @default.
- W3217761402 hasConcept C2777526511 @default.
- W3217761402 hasConcept C2779473830 @default.
- W3217761402 hasConcept C31258907 @default.
- W3217761402 hasConcept C41008148 @default.
- W3217761402 hasConcept C535046627 @default.
- W3217761402 hasConcept C71924100 @default.
- W3217761402 hasConceptScore W3217761402C13280743 @default.
- W3217761402 hasConceptScore W3217761402C132964779 @default.
- W3217761402 hasConceptScore W3217761402C142724271 @default.
- W3217761402 hasConceptScore W3217761402C174348530 @default.
- W3217761402 hasConceptScore W3217761402C17744445 @default.
- W3217761402 hasConceptScore W3217761402C19527891 @default.
- W3217761402 hasConceptScore W3217761402C199360897 @default.
- W3217761402 hasConceptScore W3217761402C199539241 @default.
- W3217761402 hasConceptScore W3217761402C205649164 @default.
- W3217761402 hasConceptScore W3217761402C2522767166 @default.